Введение
Геном человека— полный набор генов, определяющих наш внешний вид и внутреннее строение, —упакован в 23 пары хромосом. Хромосомы нумеруют в порядке уменьшения их размера от самой большой (1-й), до самой маленькой (22- й) пары. Но из этого рада выпадают половые хромосомы: у женщин — две большие хромосомы X, а у мужчин — одна X, а другая, маленькая, Y. По своему размеру хромосома X находится между 7-й и 8-й хромосомами, а хромосома Y — самая маленькая в геноме.
Само по себе число 23 не несет никакого биологического смысла. У многих видов, включая наших ближайших родственников — человекообразных обезьян, хромосом больше, у других видов их меньше. Группирование взаимосвязанных генов, или генов, выполняющих одинаковые функции, также совсем не обязательно. Вот почему однажды несколько лет назад, склонившись над своим ноутбуком, я был поражен репликой моего коллеги, эволюционного биолога Дэвида Хэйга (David Haig), о том, что ему больше всего нравится 19-я хромосома. «На ней собраны самые озорные гены», — сказал он. До этого я никогда не слышал о такой персонализации хромосом. Мне они всегда представлялись простыми наборами случайно подобранных генов. Но удачно брошенное замечание Хайга прочно засело у меня в голове. Почему бы не написать историю генома человека, переходя от хромосомы к хромосоме и подбирая такие гены, которые воплощали бы «характер» каждой из них? Подобным образом написал автобиографию Примо Леви (Primo Levi), представив свою жизнь как периодическую таблицу Менделеева. Свою жизнь он разделил на главы в соответствии с тем, изучением какого химического элемента он занимался в это время. Я стал представлять себе геном человека как своеобразную автобиографию. В геноме с помощью генетического кода записаны все превратности и достижения эволюциинашего вида, начиная с самых дальних глубин геологических эпох. У нас есть гены, которые практически не изменились с того времени, когда в кембрийской грязи зашевелилось первое живое одноклеточное существо. Одни гены появились, когда наши предки были червями, а другие — когда они стали рыбами. Некоторые гены зафиксировались в настоящем виде потому, что наши предки пережили эпидемию страшной болезни. А есть еще гены, с помощью которых можно проследить миграции людей по Земле за последние тысячелетия. Наш геном — это летопись вида, начатая четыре миллиарда лет назад и продолжающаяся до сегодняшнего дня.
|
Примо Леви (1919-1987) — итальянский химик, известный также своей литературной и общественной (антифашистской) деятельностью. Мэтт Ридли упоминает известную автобиографию Леви Se Questo ё ип Uomo (Если это человек), переведенную на английский язык и изданную в США.
Я записал в столбик все 23 хромосомы и напротив каждой из них отметил определенную сторону человеческого бытия. Затем, перебирая ген за геном, я отыскивал те из них, которые соответствовали бы тематике, заданной для этой хромосомы. Сколько раз отчаяние охватывало меня, когда я не находил нужного гена или находил его не на той хромосоме. Я долго думал, как поступить с половыми хромосомами. Наконец решил поместить их после 7-й хромосомы по размеру хромосомы X. Вот почему последняя, 23-я, глава этой книги названа «Хромосома 22».
|
Боюсь, что мой подход к написанию книги может ввести читателя в заблуждение. Например, некоторые подумают, что хромосома 1 была первой в человеческом геноме, что совершенно неверно. Или что 11-я хромосома отвечает исключительно за становление человеческой личности, что тоже не так. В геноме человека насчитывается от 60 ООО до 80 ООО генов. Я не мог в этой книге рассказать обо всех генах, хотя бы потому, что на сегодняшний день описано только чуть больше 8 ООО (но каждый год число известных генов возрастает примерно на сотню). Кроме того, многие гены были бы не интересны читателям, поскольку они играют скромную роль стрелочников на многочисленных перекрестках биохимических путей.
Цель книги состоит в том, чтобы провести быструю, но увлекательную экскурсию по геному человека с остановками у самых ярких достопримечательностей, которые наиболее полно могут рассказать нам о нашей истории. Мы с вами — счастливое поколение, которому впервые удалось раскрыть книгу человеческого генома. Благодаря возможности заглянуть в геном мы получили больше сведений о наших истоках, эволюции и природе, чем позволили это сделать все предыдущие научные открытия. Генетика наших дней революционизировала антропологию, психологию, медицину, палеонтологию и многие другие области науки. Я не утверждаю, что все в человеке определяется исключительно генами, но будет верно сказать, что гены так или иначе влияют на все стороны нашей жизни.
В этой книге приводятся многие факты, открытые в ходе выполнения проекта «Геном человека», хотя основную цель проекта — картирование всех генов на хромосомах— мы оставим в стороне. Проект еще не закончен, но без сомнений, до конца этого десятилетия мы увидим по крайней мере первый черновик генетической карты человека. Удивительно, как мало времени прошло от практически незнания до создания полного реестра всех генов. Я абсолютно уверен, что сейчас наступил переломный момент в истории нашей цивилизации. Не принимаю никаких возражений! То, что было тайной жизни за семью печатями, в течение нескольких десятилетий стало явью. И мы — первое поколение, приоткрывшее завесу тайны. Мы с вами стоим на пороге новых потрясающих открытий, а также перед новыми загадками. Это и есть тема данной книги.
|
Ошибка! Недопустимый объект гиперссылки.
В этом разделе я объясню в повествовательной форме смысл некоторых терминов, используемых в генетике. Бегло просмотрите раздел, а затем, когда в книге вам встретится непонятный термин, вернитесь к этому словарю. Количество терминов в современной генетике может привести любого в замешательство. Я приложил максимум усилий, чтобы предельно сократить использование терминов в этой книге, но без некоторых понятий обойтись невозможно.
Человеческий организм состоит примерно из 100 триллионов (миллион миллионов) клеток. Диаметр большинства из них не превышает десятой доли миллиметра. Внутри каждой клетки есть темное уплотненное тело, называемое ядром. Полный набор генов называется геномом. В ядре содержится два генома — один от матери, другой от отца. (Исключением являются половые клетки, содержащие только один геном, и красные кровяные клетки, вообще лишенные ядра.) Каждый геном содержит приблизительно 60 000-80 000 генов, собранных на разных хромосомах. (Как вы помните, у человека 23 хромосомы.) В действительности между генами материнского и отцовского геномов всегда есть некоторые отличия, в результате чего у одних людей глаза голубые, у других — карие. От родителя к ребенку передается только один геном, но до этого между материнскими и отцовскими хромосомами происходит обмен участками — рекомбинация. Представим себе, что геном — это поваренная книга, -ф- Книга состоит из 23 глав, называемых хромосомами. -ф- Каждая глава содержит тысячи «рецептов» белков, называемых генами. -ф Текст каждого рецепта состоит из «абзацев», называемых жзонами, которые прерываются не относящимися к рецепту «рекламными баннерами» — интронами.
-ф Текст «рецептов» написан «словами» — кодонами.
-ф Каждое «слово» состоит из «букв» — нуклеотидов.
В книге нашего генома миллиард «слов», т.е. в 5 000 раз больше, чем в этой книге, или в 800 раз больше, чем в Библии. Если я буду называть каждый нуклеотид генома со скоростью одно слово в секунду по 8 часов в день, на это уйдет столетие. Если записать геном человека в одну строку буква за буквой, отведя каждой по 1 мм, длина строки будет равна протяженности реки Дунай. Это гигантский документ, невероятная по своему объему книга рецептов приготовления всего, что есть в нашем организме. И при всем этом геном умещается внутри микроскопического ядра клетки, которое свободно разместится на кончике иголки.
Представление генома в виде книги — не простая метафора. Между ними много общего. Книга — это информация, записанная строкой дискретных знаков с заданным направлением чтения. Информация кодируется с помощью комбинаций ограниченного числа символов (алфавита), в результате чего образуется огромное число слов (лексикон). В геноме все происходит точно так же. Небольшое отличие состоит в том, что в русском языке текст всегда читается слева направо, а гены на хромосоме могут считываться в разных направлениях, но никогда — в обоих сразу. (В литературе геном еще часто сравнивали с копиркой. Но мне не нравится это сравнение, во-первых, потому что в наше время компьютеров уже мало кто знает, что такое копировальная бумага, а во-вторых — потому что это сравнение неправильно по своей сути. Лист бумаги с копиркой представляет собой двухмерную, а не линейную структуру, в которой информация не считывается, а передавливается.)
Еще одно отличие состоит в том, что слова в книгах могут иметь разную длину, а каждое «слово» генетического кода всегда имеет длину в три нуклеотида, которые обозначаются следующими буквами: А (аденин), С (цитозин), G (гуанин) и Т (тимин). Кроме того, текст генома записан не на бумагу, а инкрустирован в длинную полимерную цепь остатков сахара рибозы и фосфорной кислоты, известную как ДНК (де- зоксирибонуклеиновая кислота). Каждая хромосома представляет собой пару длинных (очень длинных) спирально закрученных нитей ДНК, в которых буквы-нуклеотиды выглядят как боковые ответвления, обращенные друг к другу.Геном — это очень «умная» книга. При благоприятных условиях она может самостоятельно копироваться и читаться без чьего-либо участия. Копирование генома называется репликацией, а считывание «рецептов» для приготовления белков — трансляцией. Репликация возможна благодаря важному свойству нуклеотидов — способности образовывать пары: А и Т тяготеют друг к другу, так же ведут себя G и С. В результате одноцепочечная молекула ДНК может быть затравкой для образования своей комплементарной копии: к нуклеотиду А прикрепляется нуклеотид Т, к Т — А, к G — С, а к С — G. Затем парные нуклеотиды сшиваются в новую цепь ДНК. Именно в виде двойной спирали исходной и комплементарной цепей ДНК представлена в хромосомах.
Копия комплементарной цепи ДНК возвращает нас к исходной последовательности нуклеотидов. Например, последовательность ACGT копируется в комплементарную последовательность TGCA, а та, в свою очередь, вновь копируется в ACGT. Благодаря этому ДНК может передаваться в неизменном виде из поколения в поколение, сохраняя записанную в ней информацию.
Трансляция — это более сложный процесс. Сначала на основе тех же принципов комплементарности нуклеотидов происходит копирование участка ДНК (транскрипция) в молекулу РНК. По химическому составу РНК лишь слегка отличается от ДНК. Это такая же линейная последовательность нуклеотидов, только вместо буквы Т (тимина) в ней используется буква U (урацил). Одноцепочечная молекула РНК, скопированная с ДНК, называется информационной РНК Эта молекула сразу же подвергается сложным ферментативным изменениям, в результате которых из нее вырезаются интроны, а экзоны сшиваются в новую последовательность (сплайсинг информационной РНК).
Затем готовая информационная РНК захватывается в клетке микроскопическими тельцами — рибосомами, которые сами частично построены из РНК. Рибосома перемещается вдоль информационной РНК, преодолевая за шаг один кодон, и преобразует генетический код в букву другого алфавита, состоящего из 20 разных аминокислот. Аминокислоты подносятся к месту сборки с помощью небольших молекул транспортных РНК. (Для каждой аминокислоты существует своя транспортная РНК.) По мере продвижения рибосомы вдоль информационной РНК растет цепь присоединенных аминокислот, последовательность которых точно совпадает с последовательностью соответствующих кодонов в гене. После окончания трансляции всей информационной РНК цепь аминокислот сворачивается в трехмерную структуру, форма и свойства которой полностью определяются последовательностью аминокислот. Так образуется новое химическое соединение — белок, или протеин.
Практически все, из чего состоит наш организм, от волос до гормонов, — это белки или продукты их химической активности. В свою очередь, каждый белок — это транслированный ген. Все биохимические реакции в организме проходят под контролем особых белков — ферментов. Даже процессы копирования и сборки молекул ДНК и РНК — репликация и транскрипция — тоже находятся под контролем белков. Белки принимают участие в регуляции считывания генов. Чтобы запустить транскрипцию, регуляторные белки прикрепляются к особым областям ДНК в начале гена — промоторам и энхансерам. В каждой ткани организма работают только строго определенные гены.
Во время репликации генов иногда происходят ошибки. Буква (нуклеотид) может быть пропущена или заменена другой буквой. Иногда целый фрагмент ДНК может быть удвоен, пропущен или развернут на 180°. Такие события называются мутациями. Большинство мутаций никак не проявляют себя. Например, если происходит замена одного кодо- на другим, кодирующим присоединение той же аминокислоты. (Четыре нуклеотида по три в каждом кодоне образуют 64 комбинации, которые кодируют только 20 аминокислот. Поэтому многие аминокислоты кодируются несколькими кодонами.)
Человечество накапливает примерно 100 новых мутаций за одно поколение. Может показаться, что это не так много, ведь в геноме человека более миллиона кодонов. Но даже одна мутация в неудачном месте может оказаться фатальной.
Нет правил без исключений.
-Ф Не все гены человека находятся на его 23 хромосомах. Часть генов содержится внутри микроскопических клеточных включений, называемых митохондриями. Эти гены унаследованы еще с тех времен, когда митохондрии были самостоятельно живущими микроорганизмами.
-Ф Не все гены являются фрагментами молекулы ДНК. Гены некоторых вирусов записаны в молекуле РНК.
-Ф Не все гены кодируют белки. Конечными продуктами некоторых генов являются молекулы РНК, в частности рибосомальные и транспортные РНК.
-Ф Не всеми биохимическими реакциями управляют белки. В некоторых реакциях в качестве катализаторов выступают молекулы РНК.
-Ф Не все белки кодируются одним геном. В построении некоторых белков участвуют несколько генов. И наоборот, один ген может кодировать несколько белков в результате альтернативного сплайсинга информационной РНК.
-Ф Не все 64 кодона определяют аминокислоты. Три из них, называемые стоп-кодонами, означают конец трансляции.
-Ф И наконец, не все фрагменты ДНК являются частями генов. Напротив, большая часть ДНК в хромосомах — это случайные последовательности нуклеотидов или многочисленные повторы, которые редко транскрибируются в информационные РНК или никогда не транскрибируются. Такая ДНК называется бессмысленной или эгоистичной.
Это тот минимум, который вам необходимо знать. Теперь можем приступать к экскурсии по геному человека.
Ошибка! Недопустимый объект гиперссылки.
Стремительное развитие генетики в последние два десятилетия называют не иначе как революцией. Начиная с 1990-х годов, когда в практику вошли новые методы амплификации (копирования участков хромосомы в лабораторных условиях) и секвенирования (расшифровки) ДНК, каждый год приносит больше открытий, чем было сделано за все предыдущие годы, начиная со старины Менделя. Генетика развивается столь стремительно, что уследить за тем, как изменяются наши представления о фундаментальных основах жизни и наследственности не успевает не только широкая публика, но и специалисты. Это порождает массу слухов и домыслов о страшных мутантах, которых коварные ученые штампуют в своих лабораториях, тогда как поразительные открытия новых методов диагностики и лечения генетических заболеваний, включая рак, остаются незамеченными или непонятыми. Книга Мэтта Ридли очень актуальна. Просто и доступно автор представил историю генетики от первых догадок до ошеломляющего прорыва, начавшегося с открытия структуры ДНК Уотсоном и Криком. Ридли не ограничивается сухими фактами из научных публикаций. Он удивительно точно передает атмосферу неформальных научных дискуссий, когда ученые, не опасаясь критики строгих рецензентов, позволяют себе высказывать рискованные гипотезы и резко критиковать своих оппонентов. На английском языке книга вышла в свет в конце 1999 года, в канун нового тысячелетия. С тех пор прошло уже почти семь лет. Год 1999-й уже кажется историей. Одни гипотезы, о которых пишет Ридли, уже подтверждены экспериментально, другие оказались ложными. Тем не менее книга Genome: the autobiography of a species in 23 chapters по-прежнему занимает верхние позиции в рейтингах продаж по всему миру. В ней есть то, что не устаревает: дух научных открытий и история генетики, представленная со всем драматизмом споров, дискуссий, озарений одних ученых и черной завистью других.
Прошедшие семь лет принесли много новых открытий и изменили наши представления о тех вопросах, которые Ридли затронул в своей книге. Чтобы привести книгу в соответствие с уровнем знаний середины 2006 года, в текст добавлены врезки с упоминанием новых открытий и справочной информацией. Врезки выглядят так:
Изменения именно в гене sonic hedgehog привели к тому, что предки китов и дельфинов лишились задних конечностей (Thewissen J. G. et al. 2006. Developmental basis for hind- limb loss in dolphins and origin of the cetacean body plan. PNAS, e-pub ahead of print).
Хромосома 1 Ошибка! Недопустимый объект гиперссылки.
Сначала было Слово. Слово обратило в свою веру доисторическое море и с его помощью стало беспрерывно копировать себя. Слово нашло способ трансформировать химические соединения таким способом, чтобы зациклить и зафиксировать слабые завихрения в беспрерывном потоке энтропии, зародив жизнь. Слово преобразовало безжизненную и пустынную поверхность планет в цветущий рай. И наконец, Слово вызрело в хитрую штуковину — мозг человека, который оказался способным постичь само это Слово.
Хитрая штуковина, которая находится в моей черепной коробке, каждый раз приходит в полное изумление, как только я начинаю думать о появлении и развитии жизни на Земле и о своем месте в этой жизни. Надо же было так случиться, что 4 млрд лет эволюции привели к тому, что в один счастливый день я появился на свет. Среди 5 млн видов, населяющих Землю, мне посчастливилось родиться наделенным сознанием. Среди 6 млрд людей на планете я был удостоен чести родиться в стране, где впервые удалось постичь это Слово. Я был рожден всего пять лет спустя и всего в двух сотнях миль от того места, где два представителя моего вида установили структуру ДНК и тем самым раскрыли величайший и на удивление простой секрет Вселенной. Можете надсмехаться над моей восторженностью. Считайте меня смешным материалистом, молящимся перед трехбуквенным акронимом. Но спуститесь со мной к первоистокам появления жизни из мертвой материи, и мне, я уверен, удастся вселить в вас безмерное очарование этим Словом.
«Поскольку земля и океаны, по-видимому, были заселены растительными организмами задолго до появления животных и многие семейства животных появились раньше других семейств, не можем ли мы заключить, что одна и только одна из нитей жизни была первоисточником всех остальных форм живых организмов на Земле?» — спрашивал в 1794 году поэт, врач и разносторонне образованный человек Эразм Дарвин (Erasmus Darwin. 1794. Zoonomania: or the laws of organic life. Vol. II, p. 244. Third ed. 1801. J. Johnson, London). Это прозрение, с учетом времени, в которое оно произошло, поразительно не только потому, что было высказано предположение о наличии единого источника всех органических форм жизни (эту идею через 65 лет разовьет в своей книге Чарльз — внук Эразма Дарвина), удивляет также использование странного словосочетания — «нить жизни». В основе жизни действительно лежит нить.
Но как нить может сделать что-то живым? Жизнь — это весьма скользкое и неуловимое понятие для тех, кто хочет дать ему определение. Живые организмы обладают способностью размножаться и способностью к упорядочению материи. У кролика рождаются кролики. Одуванчик дает жизнь одуванчику. Но кролик может делать другие не менее удивительные вещи. Он ест траву и преобразует хаос окружающего мира в собственные ткани, имеющие сложную организацию. Но ведь второй закон термодинамики гласит, что в закрытых системах развитие происходит в направлении от порядка к беспорядку. Нарушения закона не происходит, поскольку кролик не является закрытой системой. Кролику удается привести в порядок материю, из которой состоит его тело, только за счет расхода огромного количества энергии. Как удачно заметил Эрвин Шредингер (Erwin Schrodinger), живые существа «пьют упорядоченность» из окружающей среды.
Эрвин Шредингер (1887-1961) — лауреат Нобелевской премии в области физики. Он родился в Германии, долго жил в Австрии, но своими трудами прославился в Оксфорде (Англия), стоял у истоков открытия ДНК. Выше приводится цитата из его книги What is Life? (Что есть жизнь?).
Оба свойства живого реализуются только за счет наличия информации о том, как это делать. Способность к размножению становится возможной благодаря наличию плана построения нового организма. План построения крольчонка находится в яйцеклетке кролика. В свою очередь, способность к упорядочению материи с помощью метаболизма также основана на положительной информации — плане организации тканей и систем организма. Взрослый кролик с его способностями к размножению и метаболизму предопределен в нити ДНК яйцеклетки, точно так же, как пирог предопределен в рецепте поваренной книги. Эта идея перекликается с высказыванием Аристотеля в том, что «суть» цыпленка скрыта в яйце, а желудь наделен планом будущего дуба. Туманные представления Аристотеля об информатике, погребенные под наслоениями следующих поколений физиков-механиков, были возвращены к жизни в исследованиях современных генетиков. Как пошутил Макс Дельбрюк (Max Delbriick), греческих мудрецов следовало бы наградить Нобелевской премией посмертно за открытие ДНК (Campbell J. 1983. Grammatical man: information, entropy, language and life. Allen Lane, London).
Макс Дельбрюк (1906-1981) - родился в Берлине, но научную карьеру сделал в США. В 1969 году был удостоен Нобелевской премии за создание математической модели мутаций у микроорганизмов.
Нить ДНК — это письмо, записанное с помощью алфавита химических соединений, называемых нуклеотидами. Одна буква — один нуклеотид. Невероятно просто, даже не верится, что код жизни записан символами, которые мы можем свободно прочитать. Точно так же, как текст на английском языке, генетический код представляет собой строку символов. Так же, как в обычном тексте, символы алфавита совершенно равнозначны, а значение имеют лишь их комбинации. Более того, язык ДНК проще английского, так как генетический алфавит состоит лишь из четырех букв: А, С, G и Т.
Удивительно, как людям удалось постичь алфавит жизни? В первую половину XX столетия вопрос «Что такое ген?» не давал покоя биологам. Казалось, что человечество никогда не найдет ответа на этот вопрос. Давайте вернемся даже не в 1953 год, когда была открыта симметричная структура ДНК, а еще на 10 лет назад, в 1943 год. Те, кому суждено будет через 10 лет раскрыть тайну жизни, в это время работали совсем над другими темами. Фрэнсис Крик (Francis Crick) разрабатывал морскую мину в лаборатории недалеко от Портсмута. В это же время Джеймс Уотсон (James Watson) только поступил в свои беспокойные 15 лет в Чикагский университет, решив посвятить свою жизнь орнитологии. Морис Уилкинс (Maurice Wilkins) участвовал в разработке атомной бомбы в США. Розалинда Франклин (Rosalind Franklin) изучала структуру каменного угля по программе правительства Великобритании.
В том же 1943 году в Освенциме Иозеф Менгеле (Josef Mengele) как гротескную пародию на научные исследования ставит бесчеловечные эксперименты на близнецах. Менгеле пытается разобраться в наследственности, но его теория евгеники оказалась тупиковой и бесплодной ветвью, отвергнутой будущей наукой.
В Дублине в 1943 году, бежавший от Менгеле и ему подобных, великий физик Эрвин Шредингер (Erwin Schrodinger) выступает в колледже Тринити с серией лекций на тему «Что есть жизнь?». Он пытается обозначить проблему. Ему известно, что секрет жизни хранится в хромосоме: «Именно хромосомы... содержат что-то вроде кода, полностью определяющего будущее строение и развитие индивидуума, а также его функционирование в зрелом возрасте». Ген, по мнению Шредингера, настолько мал, что не может быть ни чем иным, как большой молекулой. Это прозрение затем вдохновит целое поколение ученых, включая Крика, Уотсона, Уилкинса и Франклин, на изучение проблемы, которая оказалась вполне решаемой. Подойдя столь близко к ответу, Шредингер сворачивает в сторону. Он полагает, что секрет передачи наследственности с помощью молекул лежит в его любимой квантовой теории и, увлекаемый этим наваждением, заходит в тупик. Секрет жизни не имеет ничего общего с квантовой теорией. Физика здесь ни при чем (Schrodinger Е. 1967. What is life? Mind and matter. Cambridge University Press, Cambridge).
В Нью-Йорке в 1943 году шестидесятишестилетний канадский ученый Освальд Эйвери (Oswald Avery) завершает грандиозный эксперимент, доказывающий причастность ДНК к наследственности. Проведя серию сложных экспериментов, он показал, что бактерию, вызывающую пневмонию, можно трансформировать из безвредной формы в агрессивную, обработав некоторыми химическими препаратами. Эйвери доказал, что передача признака связана исключительно с очищенной ДНК. В научной статье он изложил свое открытие в столь осторожной форме, что суть открытия смогли понять лишь немногие, и то значительно позже. Лишь в своем письме брату, написанном в 1943 году, Эйвери позволил себе говорить более открыто: «Если мы правы, что, безусловно, пока еще не доказано, то из этого следует, что нуклеиновая кислота (ДНК) не только структурно необходима, но и является функционально активной субстанцией, определяющей биохимическую активность и специфические характеристики клеток. Другими словами, становится возможным посредством определенной химической субстанции целенаправленно изменять клетки и делать эти изменения наследуемыми. Это именно то, о чем генетики мечтали долгие годы» (Judson Н. Е 1979. The eight day of creation. Jonathan Cape, London).
Эйвери почти удалось раскрыть секрет жизни, но он все еще мыслит категориями химии. «Вся жизнь — это химия», — предположил в 1648 году Ян Баптист ван Гельмонт (Jan Baptista van Helmont). «По крайней мере часть жизни — это химия», — сказал Фридрих Велер (Friedrich Wohler) в 1828 году, когда ему удалось синтезировать мочевину из хлорида аммония и цианида серебра, разрушив тем самым священную стену, разделяющую миры химии и биологии. До этого считалось, что мочевина — это присущее только живой материи вещество, которое невозможно синтезировать из обычных химических соединений. Представление о том, что жизнь — это химия, справедливо, но скучно, как и высказывание по поводу того, что футбол — это физика. Жизнь с некоторой натяжкой можно представить как химию всего трех элементов — водорода, углерода и кислорода, на долю которых приходится 98% живой массы. Но биология изучает такие сложные проявления жизни, как наследственность, — вот что их интересует, а не химический состав. Эйвери не может понять, что такого есть в химической молекуле ДНК, что могло бы объяснить явление наследственности. Ответ будет найден не в области химии.
В английском городе Блечли (Bletchley) в 1943 году засекреченный великолепный математик Алан Тьюринг (Alan Turing) подошел к величайшему открытию — принципу работы вычислительной техники. Разобравшись в работе немецкой военной шифровальной машины Лоренца, Тьюринг создает первый компьютер, названный им Colossus. В основу универсальной вычислительной машины Тьюринга легла изменяемая и сохраняемая программа. Никто не осознал в то время, и даже сам Тьюринг, что он, вероятно, ближе всех подошел к раскрытию секрета жизни. Наследственность — это изменяемая и сохраняемая программа, а метаболизм — универсальная машина. Их связывает между собой код — система абстрактных сообщений, которые могут быть записаны не важно в чем — в химических веществах, физических явлениях или даже в нематериальной форме. Основной секрет лежит в самовоспроизведении. Все, что может использовать ресурсы окружающего мира для копирования себя, — это форма жизни. А наиболее вероятной формой жизни может быть дижиталъное сообщение — число или слово (Hodges А. 1997. Turing. Phoenix, London).
Термин digital на русский язык переводится как числовой код или сообщение, что не совсем верно, поскольку в основе кода могут лежать не только цифры, но любые дискретные символы - буквы, знаки, нуклеотиды.
В Нью-Джерси в 1943 году тихий и застенчивый филолог Клод Шеннон (Claude Shannon) раздумывает над идеей, которая ему пришла в голову в Принстоне (Princeton) несколько лет назад. Идея Шеннона состоит в том, что информация и энтропия являются обратными сторонами одной и той же монеты, и обе имеют тесную связь с энергией. Чем меньше энтропии в системе, тем больше в ней скрыто информации. Паровая машина может направить энергию угля в механическое вращение вала только потому, что машина имеет большое информационное содержание, переданное ей конструктором. То же самое с человеческим телом. В голове Шеннона информационная теория Аристотеля соединилась с механикой Ньютона. Так же, как Тьюринг, Шеннон имел лишь базовые представления о биологии. Но его идеи были гораздо ближе к секрету жизни, чем рассуждения химиков и физиков. Информационное содержимое системы под названием человеческое тело — это ДНК (Campbell J. 1983. Grammatical man: information, entropy, language and life. Allen Lane, London).
Вначале было Слово, и это слово было не ДНК. ДНК появилась позже, когда произошло разделение труда на биохимическую активность и хранение информации: метаболизм и репликацию. Но ДНК сохранила в себе отпечаток первого Слова, бережно пронеся его через все геологические эры до нашего дня.
Представим себе, что мы рассматриваем ядро человеческой яйцеклетки под микроскопом. Давайте расположим 23 хромосомы генома человека в ряд по размеру от самой большой слева до самой маленькой справа. Теперь максимально усилим увеличение микроскопа и сосредоточим внимание на самой большой хромосоме, которую мы исключительно ради удобства назовем первой. Все хромосомы имеют длинное и короткое плечо, разделенные перетяжкой центромером. На длинном плече хромосомы 1 рядом с центромерой мы увидим многочисленные повторы из 120 букв (А, С, G и Т). Каждый повтор отделен участком случайно подобранных букв, за которым начинается новый повтор 120-буквен- ного текста. Всего таких повторов может быть около ста. Скорее всего, эти повторы как раз и являются остатками того самого первого Слова.
Данный повторяющийся «абзац» текста является маленьким геном и в то же время наиболее активным из всех генов человека. 120 букв текста копируются в небольшую молекулу, известную как 5S РНК. Эта молекула объединяется еще с несколькими белками и молекулами РНК, тщательно подогнанными друг под друга, в результате чего образуется рибосома— машина трансляции генов в белки, в том числе в те белки, которые осуществляют репликацию ДНК. Можно сказать, что белки — это средство копирования генов в новые гены, а гены — средство копирования белков в новые белки. Рецепты используются, чтобы приготовить пищу, а пища нужна для написания новых рецептов. Жизнь — это бесконечная череда преобразований двух типов химических соединений — белков и ДНК.
Белки воплощают в себе такие проявления жизни, как метаболизм, дыхание и поведение, а ДНК — наследственность, репликацию, размножение, пол — все, что биологи называют генотипом. Одно не может существовать без другого. Точно так же, как в примере с яйцом и курицей. Что было первым, ДНК или белок? Вряд ли это была ДНК, поскольку ДНК совершенно беспомощна, пассивный кусок компьютерной программы, неспособной к катализу химических реакций. Но это и не белок, поскольку белки — чистая химия, неспособная к самовоспроизведению. Так же трудно себе представить, чтобы ДНК могла самопроизвольно породить белок, или наоборот. Этот вопрос так бы мог и остаться непостижимой загадкой, если бы Слово не оставило своего едва заметного следа на нити жизни — молекулы РНК. Как и в случае с яйцом и курицей, мы можем предположить, что яйцо все же было раньше, поскольку динозавры, предки птиц, уже откладывали яйца. Так и в споре междуСк'лкч >м и РНК все больше свидетельств в пользу того, что РНК предшествовала белкам.
РНК — это та химическая субстанция, которая связывает между собой ДНК и белки. Сейчас РНК используется в клетке главным образом как промежуточное сообщение для трансляции кода ДНК в последовательность аминокислот в белке. Но все меньше остается сомнений, что именно РНК была предшественницей обоих — белка и ДНК.
Слово было РНК. Существует пять свидетельств того, что РНК появилась раньше белков и ДНК.
1. Даже теперь химические ингредиенты молекулы ДНК получаются путем модификации ингредиентов молекулы РНК. Например, буква Т (тимин), относящаяся к ДНК, синтезируется из буквы U (урацила) — принадлежащей РНК.
2. Многие ферменты для активации требуют присутствия небольших молекул РНК.
3. Кроме того, РНК в отличие от ДНК и белков способна к самокопированию без чьего-либо участия. Добавьте только в среду необходимые ингредиенты, и процесс пойдет.
4. Если внимательно рассмотреть биохимическую активность клетки, то окажется, что все основополагающие и реликтовые процессы происходят с участием РНК. Это РНК-зависимые ферменты считывают информацию с ДНК, преобразуя ее в информационную РНК. Именно из РНК построены рибосомы, выполняющие трансляцию генетического кода в белок, при этом именно молекулы транспортных РНК вылавливают в цитоплазме аминокислоты и подносят их к месту сборки.
5. И наконец, РНК в отличие от ДНК выступает в качестве катализатора химических процессов, разрушаю щих или синтезирующих другие химические соединения, в том числе и саму РНК. РНК может вызывать собственное разрезание с последующим сшиванием
свободных концов, а также катализировать удлинение собственной цепи.
Открытие этих примечательных свойств РНК, сделанное Томасом Чеком (Thomas Cech) и Сидни Олтменом (Sidney Altman), изменило наше представление об истоках жизни. Теперь наиболее вероятным кажется то, что самым первым геном была молекула РНК, объединяющая в себе свойства репликации и катализа, — Слово, потребляющее вещества из окружающей среды для копирования самого себя. Возможно, если синтезировать случайным образом молекулы РНК прямо в пробирке, можно получить соединение, которое по своим химическим свойствам будет соответствовать первоисточнику жизни. Примечательно, что молекулы РНК, отобранные в подобных экспериментах, всегда были весьма похожи по своему содержанию на текст гена 5S РНК, который находится вблизи центромеры хромосомы 1.
В 1989 году за открытие свойств РНК Томас Чек и Сидни Олтмен были награждены Нобелевской премией.
Намного раньше первого динозавра, первой рыбы, первого червя, первого растения, первого гриба и первой бактерии на Земле царил мир РНК. Это было, вероятно, около 4 млрд лет тому назад. Нам неизвестно, как выглядел этот РНК-овый организм. Мы можем только предполагать, какой была химическая активность данного соединения, обеспечивающая его самовоспроизведение. Неизвестно, был ли прародитель у этого организма. Но мы можем быть уверены, что он был, поскольку на это указывают свойства современных молекул РНК (Gesteland R. Е, Atkins J. Е (eds). 1993. The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).