Эволюция звёзд. Рождение, жизнь и смерть звёзд




Мы уже с вами как-то говорили о том, что всю информацию о звёздах мы получаем лишь на основе приходящего от них излучения. Все звёзды, как и наше Солнце, излучают свет потому, что их наружные слои сильно нагреты и имеют температуру равную многим тысячам градусов по шкале Кельвина. Звезда излучает свет так же, как и любое нагретое тело, например, нить накаливания в электрической лампе. При этом чем выше температура нити накаливания, тем более белый свет она излучает.

Аналогично и с излучением звёзд: чем выше температура звезды, тем более голубоватым выглядит её свечение (как, например, у Плеяд — рассеянного звёздного скопления в созвездии Тельца).

И наоборот, холодные звёзды кажутся нам красноватыми. Это хорошо заметно на примере такого гиганта, как Бетельгейзе (альфа Ориона).

Однако наиболее полное представление об этой зависимости даёт изучение звёздных спектров. Важнейшие различия спектров звёзд заключаются в количестве и интенсивности наблюдаемых спектральных линий (в особенности линий поглощения), а также в распределении энергии в непрерывном спектре.

В 1893 году немецкий учёный Вильгельм Вин установил, что длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. При этом по мере роста температуры положение максимума смещается в коротковолновую область спектра. Длина волны, которой соответствует максимум в распределении энергии, связана с абсолютной температурой соотношением, которое называют законом смещения Ви́на:

Давайте, используя этот закон, определим температуру звезды, если в её спектре максимум интенсивности излучения приходится на длину волны равную 230 нм.

Изучение различных типов звёзд показало, что температура большинства из них заключена в пределах от 2000 до 60 000 К кельвинов. Также было установлено, что изменение температуры меняет состояние атомов и молекул в атмосфере звёзд, что отражается в их спектрах. С учётом видов спектральных линий и их интенсивности строится спектральная классификация звёзд.

Современная спектральная классификация звёзд была создана в двадцатые (20-е) годы двадцатого (ХХ) века в Гарвардской обсерватории (США). В ней спектральные типы принято обозначать большими буквами латинского алфавита в порядке, соответствующем убыванию температуры:

Для запоминания этой последовательности астрономами было придумано мнемоническое правило. В оригинале оно звучит так: O h, B e A F ine G irl, K iss M e. В русском эквиваленте вариант такой: О дин Б ритый А нгличанин Ф иники Ж евал К ак М орковь.

Давайте чуть подробнее остановимся на каждом из классов. Итак, звёзды, принадлежащие классу О, являются очень горячими, с температурой 30—60 тыс. К. При такой высокой температуре наибольшая интенсивность излучения приходится на ультрафиолетовую область спектра. Поэтому такие звёзды имеют ярко выраженный голубой оттенок. Типичным представителем данного класса является Хека — Лямбда Ориона.

К классу В относятся звёзды, температура которых колеблется в пределах 10—30 тыс. К. Они имеют голубовато-белый цвет. А типичным представителем класса является звезда Спика, находящаяся в созвездии Девы.

Звёзды белого цвета, с температурой поверхности 7500—10 000 К относятся к классу А. Их яркими представителями являются звёзды Вега и Сириус.

Классу F принадлежат звёзды, температура которых лежит в диапазоне 6000—7500 К. Они имеют жёлто-белый цвет. Знаменитые звёзды — Порцион в созвездии Малого Пса и Канопус в созвездии Киля.

Жёлтые звёзды, с температурой поверхности 5000—6000 К относятся к классу G. Известным представителем этого класса является наше Солнце.

Звёзды, принадлежащие классу К, обладают оранжевым цветом. А температура их поверхности заключена в пределах 3500—5000 К. К этому классу относятся звёзды Арктур в созвездии Волопаса и Альдебаран в Тельце.

И, наконец, класс М. К нему относятся холодные звёзды с минимальной температурой равной 2000—3500 К. Их цвет — ярко-красный, иногда тёмно-оранжевый. К этому классу относится знаменитая звезда Бетельгейзе в созвездии Ориона.

По мере усовершенствования методов наблюдения за звёздами и их спектрами Гарвардская спектральная классификация дополнялась и расширялась. Так, например, буквой Q стали обозначать спектральные классы новых (молодых) звёзд. Спектры планетарных туманностей причислили к классу Р. А буквой W или WR стали обозначать спектры звёзд типа Вольфа — Райе — это очень горячие звёзды, температура превышает звёзды O класса и достигает 100 000 К.

В 1995 году были впервые были обнаружены звёзды, температура которых не превышала 2000 К — коричневые карлики. Так появились спектральные классы L, Т и Y. Причём класс Y появился относительно недавно — в августе 2011 года.

К нему относятся ультрахолодные коричневые карлики, с температурой 300—500 К.

Тонкие различия внутри каждого класса дополнительно подразделяют на 10 подклассов — от 0 (самые горячие) до 9 (самые холодные). Лишь спектральный класс O делится на меньшее количество подклассов: от 4 до 9,5. Например, наше Солнце принадлежит к спектральному классу G2.

Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звёзд, но и определить скорость их движения.

Ещё 1842 году Кристиан Доплер, наблюдая за волнами на воде, обнаружил, что при движении источника волн происходит изменение частоты и, соответственно, длины волны излучения, воспринимаемое наблюдателем.

Давайте поясним это на простом примере. Представьте, что вы стоите на остановке и ждёте автобус. Где-то вдалеке от вас слышится звук сирены, например машины скорой помощи. По мере её приближения к вам частота звуковых волн, издаваемых сиреной, будет увеличиваться. Как следствие, вы будете слышать её более высокий тон. Происходит это из-за того, что за время испускания одного пика волны́ от сирены до следующего машина успеет проехать некоторое расстояние в вашу сторону. Из-за этого источник каждого следующего пика волны будет ближе, а волны будут достигать ушей чаще. Когда же машина будет проезжать рядом с вами, вы услышите тот тон, который издаёт сирена на самом деле. В дальнейшем, по мере удаления машины, тон сирены будет становиться более низким из-за уменьшения частоты звуковых волн.

То же самое происходит и с электромагнитными волнами. При уменьшении расстояния между звездой и наблюдателем длина волны её излучения уменьшается и соответствующая линия в спектре смещается к фиолетовому концу спектра. И наоборот, при удалении звезды длина волны излучения увеличивается, а линия смещается в красную часть спектра.

Это явление получило название эффекта Доплера, согласно которому зависимость разности длин волн от скорости источника по лучу зрения и скорости света выражается формулой:

В этой формуле — это длина волны спектральной линии для неподвижного источника, а — в спектре движущегося источника. Соответственно, — это скорость источника (в нашем случае звезды), а — скорость света в вакууме.

Ещё одним фактором, влияющим на вид спектра звезды, является её светимость, которая не учитывается в Гарвардской классификации. Хотя различия в светимостях приводят к различию в спектрах звёзд-гигантов и карликов одинаковых Гарвардских спектральных классов. Поэтому в 1943 году в Йеркской обсерватории была разработана ещё Йеркская классификация, которая учитывает светимость звёзд. Иначе её называют МКК — по первым буквам фамилий учёных: Уильям Морган, Филипп Кинан и Эдит Келлман.

С учётом двух классификаций наше Солнце имеет спектральный класс G2V.

В заключение отметим, что ещё в начале ХХ века американский астроном Норрис Рассел и датский астроном Эйнар Герцшпрунг независимо друг от друга обнаружили существование зависимости между видом спектра и светимостью звёзд. Они задались вопросом: «Что будет, если выстроить звёзды в одну систему координат, где их положение по вертикальной оси зависело бы от их светимости (или абсолютной звёздной величины), а по вертикальной — от температуры (спектрального класса)?»

Если бы звезды распределились по системе равномерно, никакого открытия не было бы. Но любое отклонение от порядка показало бы закономерность в устройстве светил, объясняющую многие загадки. Так и случилось. Если светимость звезды будет расти по Y снизу вверх, а температура по оси Х — справа налево, то звезды делятся на чётко выраженные группы — последовательности.

Посередине, с верхнего левого в нижний правый угол, тянется так называемая Главная последовательность — ряд обычных, карликовых звёзд, составляющих около 90 % от всех звёзд во Вселенной. Здесь же располагается и наше Солнце.

В верхнем правом углу собрались звёзды, которые очень яркие, но температура их фотосферы достаточно низкая — на это указывает их красный цвет. Они образуют последовательность красных гигантов.

В верхней части диаграммы располагается последовательность сверхгигантов. Это звёзды с очень высокой светимостью, низкой плотностью, в десятки и сотни раз большими диаметрами, чем у Солнца.

Под главной последовательностью расположены горячие звёзды со слабой светимостью. Это последовательность белых карликов. Их размеры сравнимы с размерами Земли, а массы близки к массе Солнца.

Полученная диаграмма называется диаграммой «спектр — светимость» или диаграммой Герцшпрунга — Рассела.

Наш вам совет: держите в голове эту диаграмму. Она не сложная для понимания, но имеет огромное значение в эволюции звёзд.

https://www.youtube.com/watch?time_continue=1&v=tWQh0bbeA4g&feature=emb_logo

https://www.youtube.com/watch?v=6xCYUuY7pT4

https://www.youtube.com/watch?v=RvYVKKs3sO0

https://www.youtube.com/watch?v=XMrSlQ5QpVQ

 

Д/З § - 123 изучить, конспект.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: