БИЛЕТ № 2
1. Принципы определения географических координат по астрономическим наблюдениям.
Существует 2 географические координаты: географическая широта и географическая долгота. Астрономия как практическая наука позволяет находить эти координаты. Высота полюса мира над горизонтом равна географической широте места наблюдения. Приближенно географическую широту можно определить, измерив высоту Полярной звезды, т.к. она отстоит от северного полюса мира примерно на 10. Можно определить широту места наблюдения по высоте светила в верхней кульминации (Кульминация – момент прохождения светила через меридиан) по формуле:
j = d ± (90 – h), в зависимости от того, к югу или к северу она кульминирует от зенита. h – высота светила, d – склонение, j – широта.
Географическая долгота – это вторая координата, отсчитывается от нулевого Гринвичского меридиана к востоку. Земля разделена на 24 часовых пояса, разница во времени – 1 час. Разница местных времён равна разнице долгот:
Tλ1 – Tλ2 = λ1 – λ2 Т.о., узнав разность времен в двух пунктах, долгота одного из которых известна, можно определить долготу другого пункта.
Местное время – это солнечное время в данном месте Земли. В каждой точке местное время различно, поэтому люди живут по поясному времени, т. е. по времени среднего меридиана данного пояса. Линия изменения даты проходит на востоке (Берингов пролив).
2. Вычисление температуры звезды на основе данных о ее светимости и размерах.
L – светимость (Lc = 1)
R – радиус (Rc = 1)
T – Температура (Tc = 6000)
БИЛЕТ № 3
1. Причины смены фаз Луны. Условия наступления и периодичность солнечных и лунных затмений.
Фаза, в астрономии смена фаз происходит из-за периодич. изменения условий освещенности небесных тел по отношению к наблюдателю. Cмена Ф. Луны обусловлена изменением взаимного положения Земли, Луны и Солнца, а также тем, что Луна светит отраженным от него светом. Когда Луна находится между Солнцем и Землей на прямой, соединяющей их, к Земле обращена неосвещенная часть лунной поверхности, поэтому мы ее не видим. Эта Ф. — новолуние. Через 1— 2 суток Луна отходит от этой прямой, и с Земли виден узкий лунный серп. Во время новолуния та часть Луны, к-рая не освещена прямыми солнечными лучами, все же видна на темном небе. Это явление назвали пепельным светом. Через неделю наступает Ф. — первая четверть: освещенная часть Луны составляет половину диска. Затем наступает полнолуние — Луна находится опять на линии, соединяющей Солнце и Землю, но по др. сторону Земли. Виден освещенный полный диск Луны. Затем начинается убывание видимой части и наступает последняя четверть, т.е. опять можно наблюдать освещенным половину диска. Полный период смены Ф. Луны называется синодическим месяцем.
|
Затмение, астрономическое явление, при к-ром одно небесное тело полностью или частично закрывает др. или тень одного тела падает на др. Солнечные 3. происходят, когда Земля попадает в тень, отбрасываемую Луной, а лунные — когда Луна попадает в тень Земли. Тень Луны во время солнечного 3. состоит из центральной тени и окружающей ее полутени. При благоприятных условиях полное лунное 3. может длиться 1 час. 45 мин. Если Луна не полностью входит в тень, то наблюдатель на ночной стороне Земли увидит частное лунное 3. Угловые диаметры Солнца и Луны почти одинаковы, поэтому полное солнечное 3. продолжается всего неск. минут. Когда Луна находится в апогее, ее угловые размеры немного меньше, чем Солнца. Солнечное 3. может произойти, если линия, соединяющая центры Солнца и Луны, пересекает земную поверхность. Диаметры лунной тени при падении на Землю могут достигать неск. сотен километров. Наблюдатель видит, что темный лунный диск не полностью закрыл Солнце, оставив открытым его край в виде яркого кольца. Это т.н. кольцевое солнечное 3. Если же угловые размеры Луны больше, чем Солнца, то наблюдатель в окрестности точки пересечения линии, соединяющей их центры с земной поверхностью, увидит полное солнечное 3. Т.к. Земля вращается вокруг своей оси, Луна — вокруг Земли, а Земля — вокруг Солнца, лунная тень быстро скользит по земной поверхности от точки, где она на нее упала, до др., где ее покинет, и прочерчивает на Земле *полосу полного или кольцевого 3. Частное 3. можно наблюдать, когда Луна загораживает лишь часть Солнца. Время, длительность и картина солнечного или лунного 3. зависят от геометрии системы Земля—Луна—Солнце. Из-за наклона лунной орбиты относительно *эклиптики солнечные и лунные 3. происходят не в каждое новолуние или полнолуние. Сравнение предсказания 3. с наблюдениями позволяет уточнить теорию движения Луны. Поскольку геометрия системы почти точно повторяется каждые 18 лет 10 суток, 3. происходят с этим периодом, называемым саросом. Регистрации 3. с древних времен позволяют проверить воздействие приливов на лунную орбиту.
|
|
2. Определение координат звезд по звездной карте.
БИЛЕТ № 4
1. Особенности суточного движения Солнца на различных географических широтах в различное время года.
Рассмотрим годичное перемещение Солнца по небесной сфере. Полный оборот вокруг Солнца Земля совершает за год, за одни сутки Солнце смещается по эклиптике с запада на восток примерно на 1°, а за 3 месяца - на 90°. Однако на данном этапе важно, что с перемещение Солнца по эклиптике сопровождается изменением его склонения в пределах от δ = -e (зимнее солнцестояние) до δ = +e (летнее солнцестояние), где e – угол наклона земной оси. Поэтому в течении года меняется и расположение суточной параллели Солнца. Рассмотрим средние широты северного полушария.
Во время прохождения Солнцем точки весеннего равноденствия (α = 0ч), в конце марта склонение Солнца равно 0°, поэтому в этот день Солнце находится практически на небесном экваторе, восходит на востоке, поднимается в верхней кульминации на высоту h = 90° - φ и заходит на западе. Поскольку небесный экватор делит небесную сферу пополам, то Солнце половину суток находится над горизонтом, половину - под ним, т.е. день равен ночи, что и отражено в названии "равноденствие". В момент равноденствия касательная к эклиптике в месте нахождения Солнца наклонена к экватору на максимальный угол, равный e, поэтому и скорость увеличения склонения Солнца в это время также максимальна.
После весеннего равноденствия склонение Солнца быстро увеличивается, поэтому с каждым днем все большая часть суточной параллели Солнца оказывается над горизонтом. Солнце восходит все раньше, поднимается в верхней кульминации все выше и заходит все позже. Точки восхода и захода каждый день смещаются к северу, а день удлиняется.
Однако угол наклона касательной к эклиптике в месте нахождения Солнца с каждым днем уменьшается, а вместе с ним уменьшается и скорость увеличения склонения. Наконец, в конце июня Солнце достигает самой северной точки эклиптики (α = 6ч, δ = +e). К этому моменту оно поднимается в верхней кульминации на высоту h = 90° - φ + e, восходит примерно на северо-востоке, заходит на северо-западе, и продолжительность дня достигает максимального значения. Вместе с тем ежедневное увеличение высоты Солнца в верхней кульминации прекращается, и полуденное Солнце как бы "останавливается" в своем движении на север. Отсюда и название "летнее солнцестояние".
После этого склонение Солнца начинает уменьшаться - сначала очень медленно, а затем все быстрее. Восходит оно с каждым дне позже, заходит раньше, точки восхода и захода перемещаются обратно, к югу.
К концу сентября Солнце достигает второй точки пересечения эклиптики с экватором (α = 12ч), и снова наступает равноденствие, теперь уже осеннее. Снова скорость изменения склонения Солнца достигает максимума, и оно быстро смещается к югу. Ночь становится длиннее дня, и с каждым днем высота Солнце в верхней кульминации уменьшается.
К концу декабря Солнце достигает самой южной точки эклиптики (α = 18ч) и его движение на юг прекращается, оно снова "останавливается". Это зимнее солнцестояние. Солнце восходит почти на юго-востоке, заходит на юго-западе, а в полдень поднимается на юге на высоту h = 90° - φ - e.
А после все начинается сначала - склонение Солнца увеличивается, высота в верхней кульминации растет, день удлиняется, точки восхода и захода смещаются к северу.
Из-за рассеивания света земной атмосферой небо продолжает оставаться светлым и некоторое время после захода Солнца. Этот период называется сумерками. По глубине погружения Солнца под горизонт различаются сумерки гражданские (-8°<h<0°), когда еще совсем светло, навигационные (h>-12°) и астрономические (h>-18°), по окончании которых яркость ночного неба остается примерно постоянной.
Летом, при d = +e, высота Солнца в нижней кульминации равна h = φ + e - 90°. Поэтому севернее широты ~ 48°.5 в летнее солнцестояние Солнце в нижней кульминации погружается под горизонт меньше, чем на 18°, и летние ночи становятся светлыми из-за астрономических сумерек. Аналогично при φ > 54°.5 в летнее солнцестояние высота Солнца h > -12° - всю ночь длятся навигационные сумерки (в эту зону попадает Москва, где не темнеет по три месяца в году - с начала мая до начала августа). Еще севернее, при φ > 58°.5, летом уже не прекращаются гражданские сумерки (здесь расположен Петербург с его знаменитыми "белыми ночами").
Наконец, на широте φ = 90° - e суточная параллель Солнца во время солнцестояний коснется горизонта. Эта широта - северный полярный круг. Еще севернее Солнце на некоторое время летом не заходит за горизонт - наступает полярный день, а зимой - не восходит - полярная ночь.
А теперь рассмотрим более южные широты. Как уже говорилось, южнее широты φ = 90° - e - 18° ночи всегда темные. При дальнейшем движении на юг Солнце в любое время года поднимается все выше и выше, а различие между частями его суточной параллели, находящимися над и под горизонтом, уменьшается. Соответственно, и продолжительность дня и ночи даже во время солнцестояний различаются все меньше и меньше. Наконец, на широте j = e суточная параллель Солнца для летнего солнцестояния пройдет через зенит. Эта широта называется северным тропиком, в момент летнего солнцестояния в одной из точек на этой широте Солнце бывает точно в зените. Наконец, на экваторе суточные параллели Солнца всегда делятся горизонтом на две равные части, то есть день там всегда равен ночи, а Солнце бывает в зените во время равноденствий.
К югу от экватора все будет аналогично вышеописанному, только большую часть года (а южнее южного тропика - всегда) верхняя кульминация Солнца будет происходить к северу от зенита.
2. Наведение на заданный объект и фокусирование телескопа.
БИЛЕТ № 5
1. Принцип работы и назначение телескопа.
Телескоп, астрономический прибор для наблюдения небесных светил. Хорошо сконструированный телескоп способен собирать электромагнитное излучение в различных диапазонах спектра. В астрономии оптический телескоп предназначен для увеличения изображения и сбора света от слабых источников, особенно невидимых невооруженным глазом, т.к. по сравнению с ним способен собирать больше света и обеспечивать высокое угловое разрешение, поэтому в увеличенном изображении можно видеть больше деталей. В телескопе-рефракторе в качестве объектива используется большая линза, собирающая и фокусирующая свет, а изображение рассматривается с помощью окуляра, состоящего из одной или нескольких линз. Основной проблемой при конструировании телескопов-рефракторов является хроматическая аберрация (цветная кайма вокруг изображения, создаваемого простой линзой вследствие того, что свет различных длин волн фокусируется на разных расстояниях.). Её можно устранить, используя комбинацию выпуклой и вогнутой линз, однако линзы больше некоторого предельного размера (около 1 метра в диаметре) изготовить невозможно. Поэтому в настоящее время предпочтение отдаются телескопам-рефлекторам, в которых в качестве объектива используется зеркало. Первый телескоп-рефлектор изобрел Ньютон по своей схеме, называемой системой Ньютона. Сейчас существует несколько методов наблюдения изображения: системы Ньютона, Кассегрена (положение фокуса удобно для регистрации и анализа света с помощью других приборов, таких, как фотометр или спектрометр), куде (схема очень удобна, когда для анализа света требуется громоздкое оборудование), Максутова (т.н. менисковая), Шмидта (применяется, когда необходимо сделать масштабные обзоры неба).
Наряду с оптическими телескопами имеются телескопы, собирающие электромагнитное излучение в других диапазонах. Например, широко распространены различные типы радиотелескопов (с параболическим зеркалом: неподвижные и полноповоротные; типа РАТАН-600; синфазные; радиоинтерферометры). Имеются также телескопы для регистрации рентгеновского и гамма-излучения. Поскольку последнее поглощается земной атмосферой, рентгеновские телескопы обычно устанавливаются на спутниках или воздушных зондах. Гамма-астрономия использует телескопы, располагаемые на спутниках.
1. Вычисление периода обращения планеты на основе третьего закона Кеплера.
Тз = 1год
аз = 1 астрономическая единица
1 парсек = 3,26 светового года = 206265 а. е. = 3 * 1011 км.
БИЛЕТ № 6
1. Способы определения расстояний до тел Солнечной системы и их размеров.
Сперва определяется расстояние до какой-нибудь доступной точки. Это расстояние называется базисом. Угол, под которым из недоступного места виден базис, называют параллаксом. Горизонтальным параллаксом называют угол, под которым с планеты виден радиус Земли, перпендикулярный лучу зрения.
p² – параллакс, r² – угловой радиус, R – радиус Земли, r – радиус светила.
Радиолокационный метод. Он заключается в том, что на небесное тело посылают мощный кратковременный импульс, а затем принимают отраженный сигнал. Скорость распространения радиоволн равна скорости света в вакууме: известна. Поэтому если точно измерить время, которое потребовалось сигналу, чтобы дойти до небесного тела и возвратиться обратно, то легко вычислить искомое расстояние.
Радиолокационные наблюдения позволяют с большой точностью определять расстояния до небесных тел Солнечной системы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.
Лазерная локация Луны. Вскоре после изобретения мощных источников светового излучения — оптических квантовых генераторов (лазеров) — стали проводиться опыты по лазерной локации Луны. Метод лазерной локации аналогичен радиолокации, однако точность измерения значительно выше. Оптическая локация дает возможность определить расстояние между выбранными точками лунной и земной поверхности с точностью до сантиметров.
Для определения размеров Земли определяют расстояние между двумя пунктами, расположенными на одном меридиане, затем длину дуги l, соответствующей 1° - n.
Для определения размеров тел Солнечной системы можно измерить угол, под которым они видны земному наблюдателю – угловой радиус светила r и расстояние до светила D.
R=D sin r.
Учитывая p0 – горизонтальный параллакс светила и, что углы p0 и r малы,
2. Определение светимости звезды на основе данных о ее размерах и температуре.
L – светимость (Lc = 1)
R – радиус (Rc = 1)
T – Температура (Tc = 6000)
БИЛЕТ № 7
1. Возможности спектрального анализа и внеатмосферных наблюдений для изучения природы небесных тел.
Разложение электромагнитного излучения по длинам волн с целью их изучения называется спектроскопией. Анализ спектров – основной метод изучения астрономических объектов, применяемый в астрофизике. Изучение спектров дает информацию о температуре, скорости, давлении, химическом составе и о других важнейших свойствах астрономических объектов. По спектру поглощения (точнее, по наличию определенных линий в спектре) можно судить о химическом составе атмосферы звезды. По интенсивности спектра можно определить температуру звёзд и других тел:
lmaxT = b, b – постоянная Вина. Многое о звезде можно узнать при помощи эффекта Допплера. В 1842 году он установил, что длина волны λ, принятая наблюдателем, связана с длиной волны источника излучения соотношением: ,где V– проекция скорости источника на луч зрения. Открытый им закон получил название закона Доплера: . Смещение линий в спектре звезды относительно спектра сравнения в красную сторону говорит о том, что звезда удаляется от нас, смещение в фиолетовую сторону спектра – что звезда приближается к нам. Если линии в спектре периодически изменяются, то звезда имеет спутник и они обращаются вокруг общего центра масс. Эффект Доплера также дает возможность оценить скорость вращения звезд. Даже когда излучающий газ не имеет относительного движения, спектральные линии, излучаемые отдельными атомами, будут смещаться относительно лабораторного значения из-за беспорядочного теплового движения. Для общей массы газа это будет выражаться в уширении спектральных линий. При этом квадрат доплеровской ширины спектральной линии пропорционален температуре. Таким образом, по ширине спектральной линии можно судить о температуре излучающего газа. В 1896 году нидерландским физиком Зееманом был открыт эффект расщепления линий спектра в сильном магнитном поле. С помощью этого эффекта теперь стало возможно «измерять» космические магнитные поля. Похожий эффект (он называется эффектом Штарка) наблюдается в электрическом поле. Он проявляется, когда в звезде кратковременно возникает сильное электрическое поле.
Земная атмосфера задерживает часть идущего из космоса излучения. Видимый свет, проходя через нее, тоже искажается: движение воздуха размывает изображение небесных тел, и звезды мерцают, хотя на самом деле их яркость неизменна. Поэтому с середины XX века астрономы начали вести наблюдения из космоса. Вне атмосферные телескопы собирают и анализируют рентгеновское, ультрафиолетовое, инфракрасное и гамма излучения. Первые три можно изучать лишь вне атмосферы, последнее же частично достигает поверхности Земли, но смешивается с ИК самой планеты. Поэтому предпочтительней выносить инфракрасные телескопы в космос. Рентгеновское излучение выявляет во Вселенной области, где особенно бурно выделяется энергия (например черные дыры), а также невидимые в других лучах объекты, например пульсары. Инфракрасные телескопы позволяют исследовать тепловые источники, скрытые для оптики, в большом диапазоне температур. Гамма-астрономия позволяет обнаружить источники электрон-позитронной аннигиляции, т.е. источники больших энергий.
2. Определение по звездной карте склонение Солнца на данный день и вычисление его высоты в полдень.
H = 900 - +
= 560
h – высота светила
БИЛЕТ № 8
1. Важнейшие направления и задачи исследования и освоения космического пространства.
Основные проблемы современной астрономии:
Нет решения многих частных проблем космогонии:
· Как сформировалась Луна, как образовались кольца вокруг планет-гигантов, почему Венера вращается очень медленно и в обратном направлении;
В звездной астрономии:
· Нет детальной модели Солнца, способной точно объяснить все его наблюдаемые свойства (в частности, поток нейтрино из ядра).
· Нет детальной физической теории некоторых проявлений звёздной активности. Например, не до конца ясны причины взрыва сверхновых звёзд; не совсем понятно, почему из окрестностей некоторых звёзд выбрасываются узкие струи газа. Однако особенно загадочны короткие вспышки гамма-излучения, регулярно происходящие в различных направлениях на небе. Не ясно даже, связаны ли они со звёздами или с иными объектами, и на каком расстоянии от нас находятся эти объекты.
В галактической и внегалактической астрономии:
· Не решена проблема скрытой массы, состоящая в том, что гравитационное поле галактик и скоплений галактик в несколько раз сильнее, чем это может обеспечить наблюдаемое вещество. Вероятно, большая часть вещества Вселенной до сих пор скрыта от астрономов;
· Нет единой теории формирования галактик;
· Не решены основные проблемы космологии: нет законченной физической теории рождения Вселенной и не ясна её судьба в будущем.
Вот некоторые вопросы, на которые астрономы надеются получить ответы в 21 веке:
· Существуют ли у ближайших звёзд планеты земного типа и есть ли у них биосферы (есть ли на них жизнь)?
· Какие процессы способствуют началу формирования звёзд?
· Как образуются и распространяются по Галактике биологически важные химические элементы, такие, как углерод, кислород?
· Являются ли чёрные дыры источником энергии активных галактик и квазаров?
· Где и когда сформировались галактики?
· Будет ли Вселенная расширяться вечно, или её расширение сменится коллапсом?
БИЛЕТ № 9
1. Законы Кеплера, их открытие, значение и границы применимости.
Три закона движения планет относительно Солнца были выведены эмпирически немецким астрономом Иоганном Кеплером в начале XVII века. Это стало возможным благодаря многолетним наблюдениям датского астронома Тихо Браге.
Первый закон Кеплера. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце (e = c/a, где с – расстояние от центра эллипса до его фокуса, а - большая полуось, е – эксцентриситет эллипса. Чем больше е, тем больше эллипс отличается от окружности. Если с = 0 (фокусы совпадают с центром), то е = 0 и эллипс превращается в окружность радиусом а).
Второй закон Кеплера (закон равных площадей). Радиус- вектор планеты за равные промежутки времени описывает равновеликие площади. Другая формулировка этого закона: секториальная скорость планеты постоянна.
Третий закон Кеплера. Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.
Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола.
В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам.
Скорость движения планеты в перигелии: , где Vc = круговая скорость при R = a.
Скорость в афелии: .
Кеплер открыл свои законы эмпирическим путем. Ньютон вывел законы Кеплера из закона всемирного тяготения. Для определения масс небесных тел важное значение имеет обобщение Ньютоном третьего закона Кеплера на любые системы обращающихся тел. В обобщенном виде этот закон обычно формулируется так: квадраты периодов T1 и T2 обращения двух тел вокруг Солнца, помноженные на сумму масс каждого тела (соответственно M1 и M2) и Солнца (Мс), относятся как кубы больших полуосей a1 и a2 их орбит: . При этом взаимодействие между телами M1 и M2 не учитывается. Если пренебречь массами этих тел в сравнении с массой Солнца, то получится формулировка третьего закона, данная самим Кеплером: .Третий закон Кеплера можно также выразить как зависимость между периодом T обращения по орбите тела с массой M и большой полуосью орбиты a: . Третий закон Кеплера можно использовать, чтобы определить массу двойных звезд.
2. Нанесение на звездную карту объекта (планета, комета и т.п.) по заданным координатам.
БИЛЕТ № 10
Планеты земной группы: Меркурий, Марс, Венера, Земля, Плутон. Имеют небольшие размеры и массы, средняя плотность этих планет в несколько раз больше плотности воды. Они медленно вращаются вокруг своих осей. У них мало спутников. Планеты земной группы имеют твердые поверхности. Сходство планет земной группы не исключает и значительного различия. Например, Венера в отличие от других планет вращается в направлении, обратном её движению вокруг Солнца, причем в 243 раза медленнее Земли. Плутон самая маленькая из планет (диаметр Плутона = 2260 км, спутник - Харон в 2 раза меньше, приблизительно так же как и система Земля - Луна, представляют собой «двойную планету»), но по физическим характеристикам он близок к этой группе.
Меркурий. Масса: 3*1023 кг(0.055 земной) R орбиты: 0.387 а.е. D планеты: 4870 км Свойства атмосферы: Атмосфера практически отсутствует, гелий и водород Солнца, натрий, выделяемый перегретой поверхностью планеты. Поверхность: изрыта кратерами, Существует впадина 1300 км в диаметре, именуемая «Бассейн Калорис» Особенности: Сутки длятся два года. | Венера. Масса: 4.78*1024кг R орбиты: 0.723 а.е. D планеты: 12100 км Состав атмосферы: В основном углекислый газ с примесями азота и кислорода, облака конденсата серной и плавиковой кислоты. Поверхность: Каменистая пустыня, относительно гладкая, впрочем есть и кратеры Особенности: Давление у поверхности в 90 раз > земного, обратное вращение по орбите, сильный парниковый эффект (Т=4750С). |
Земля. R орбиты: 1 а.е. (150 000000 км) R планеты: 6400 км Состав атмосферы: Азот на 78%, кислород на 21% и углекислый газ. Поверхность: Самая разнообразная. Особенности: Много воды, условия, необходимые для зарождения и существования жизни. Есть 1 спутник – Луна. | Марс. Масса: 6.4*1023 кг R орбиты: 1,52 а.е. (228 млн км) D планеты: 6670 км Состав атмосферы: Углекислый газ с примесями. Поверхность: Кратеры, долина «Маринера», гора Олимп – самая высокая в системе Особенности: Много воды в полярных шапках, предположительно раньше климат был пригоден для органической жизни на углеродной основе, причем эволюция климата Марса обратима. Есть 2 спутника – Фобос и Деймос. Фобос медленно падает на Марс. |
Плутон/Харон.
Масса: 1.3*1023 кг/ 1.8*1011кг
R орбиты: 29.65-49.28 а.е.
D планеты: 2324/1212 км
Состав атмосферы: Тонкий слой метана
Особенности: Двойная планета, возможно планетеземаль, орбита не лежит в плоскости других орбит. Плутон и Харон всегда обращены друг к другу одной стороной
Планеты-гиганты: Юпитер, Сатурн, Уран, Нептун.
Они имеют большие размеры и массы (масса Юпитера > массы Земли в 318 раз, по объёму - в 1320 раз). Планеты-гиганты очень быстро вращаются вокруг своих осей. Результат этого - большое сжатие. Планеты расположены далеко от Солнца. Отличаются большим числом спутников (у Юпитера –16, у Сатурна - 17, у Урана - 16, у Нептуна - 8). Особенность планеты-гигантов – кольца, состоящие из частиц и глыб. Эти планеты не имеют твердых поверхностей, плотность у них мала, состоят в основном из водорода и гелия. Газообразный водород атмосферы переходит в жидкую, а затем в твердую фазу. При этом быстрое вращение и то, что водород становится проводником электричества, обуславливает значительные магнитные поля этих планет, которые улавливают летящие от Солнца заряженные частицы и образуют радиационные пояса.
Юпитер Масса: 1.9*1027кг R орбиты: 5,2 ае D планеты: 143 760 км по экватору Состав: Водород с примесями гелия. Спутники: На Европе много воды, Ганимед со льдом, Ио с серным вулканом. Особенности: Большое Красное пятно, почти звезда, 10% излучения – собственное, оттягивает у нас Луну (по 2 метра в год). | Сатурн. Масса: 5,68* 1026 R орбиты: 9,5 а.е. D планеты: 120 420 км Состав: Водород и гелий. Спутники: Титан больше Меркурия, имеет атмосферу. Особенности: Красивые кольца, низкая плотность, много спутников, полюса магнитного поля практически совпадают с осью вращения. |
Уран Масса:8,5*1025кг R орбиты:19.2 а.е. D планеты: 51 300 км Состав: Метан, аммиак. Спутники: Миранда имеет очень сложный рельеф. Особенности: Ось вращения направлена к Солнцу, не излучает собственной энергии, самый большой угол отклонения магнитной оси от оси вращения. | Нептун. Масса: 1*1026кг R орбиты:30 а.е. D планеты: 49500 км Состав: Метан, аммиак водородная атмосфера.. Спутники: Тритон имеет азотную атмосферу, воду. Особенности: Излучает в 2.7 раза больше поглощаемой энергии. |
1. Установка модели небесной сферы для данной широты и ее ориентация по сторонам горизонта.
БИЛЕТ № 11
1. Отличительные особенности Луны и спутников планет.
Луна – единственный естественный спутник Земли. Поверхность Луны сильно неоднородна. Основные крупномасштабные образования – моря, горы, кратеры и яркие лучи, возможно, – выбросы вещества. Моря, темные, гладкие равнины, представляют собой депрессии, заполненные застывшей лавой. Диаметры самых больших из них превышают 1000 км. Др. три типа образований с большой вероятностью являются следствием бомбардировки лунной поверхности на ранних стадиях существования Солнечной системы. Бомбардировка длилась неск. сотен миллионов лет, а обломки оседали на поверхности Луны и планет. Обломки астероидов поперечником от сотен километров до мельчайших пылевых частиц сформировали гл. детали Луны и поверхностный слой скальных пород. За периодом бомбардировки последовало заполнение морей базальтовой лавой, порожденной радиоактивным разогревом лунных недр. Приборами космич. аппаратов серии «Аполлон» была зарегистрирована сейсмическая активность Луны, т. н. л унотрясение. Образцы лунного грунта, доставленные на Землю астронавтами, показали, что возраст Л. 4,3 млрд. лет, вероятно, такой же, как и Земли, состоит из тех же хим. элементов, что и Земля, с таким же примерно соотношением. На Л. нет и, вероятно, никогда не было атм-ры, и нет оснований утверждать, что когда-либо там существовала жизнь. Согласно последним теориям, Л. образовалась в рез-те столкновения планетезимали размерами с Марс и молодой Земли. Темп-pa лунной поверхности достигает 100°С лунным днем и падает до -200°С лунной ночью. На Л. не существует эрозии, за иск. медленного разрушения скал из-за попеременного теплового расширения и сжатия и случайных внезапных локальных катастроф вследствие метеоритных ударов.
Масса Л. точно измерена путем изучения орбит ее искусств, спутников и относится к массе Земли как 1/81,3; ее диаметр 3476 км составляет 1/3,6 диаметра Земли. Л. имеет форму эллипсоида, хотя три взаимно перпендикулярных диаметра различаются не больше, чем на километр. Период вращения Л. равен периоду обращения вокруг Земли, так что, если не считать эффектов либрации, она всегда повернута к ней одной стороной. Ср. плотность 3330 кг/м3, значение очень близкое к плотности основных пород, лежащих под земной корой, а сила гравитации на поверхности Луны составляет 1/6 земной. Луна – ближайшее к Земле небесное тело. Если бы Земля и Луна были точечными массами или жесткими сферами, плотность которых меняется только с расстоянием от центра, и не было бы др. небесных тел, то орбита Луны вокруг Земли была бы неизменяющимся эллипсом. Однако Солнце и в значительно меньшей степени планеты оказывают гравитац. воздействие на Л., вызывая возмущение ее орбитальных элементов, поэтому большая полуось, эксцентриситет и наклонение непрерывно подвергаются циклическим возмущениям, осциллируя относительно средних значений.
Спутники естественные, естественное тело, обращающееся вокруг планеты. В Солнечной системе известно более 70 спутников самых разных размеров и все время открываются новые. Семь крупнейших спутников – это Луна, четыре галилеевых спутника Юпитера, Титан и Тритон. Все они имеют диаметры, превышающие 2500 км, и являются маленькими «мирами» со сложной геол. историей; у нек-рых есть атмосфера. Все остальные спутники имеют размеры, сравнимые с астероидами, т.е. от 10 до 1500 км. Они могут состоять из скальных пород или льда, форма варьируется от почти сферической до неправильной, поверхность — либо древняя с многочисленными кратерами, либо подвергшаяся изменениям, связанным с активностью в недрах. Размеры орбит лежат в диапазоне от менее двух до нескольких сотен радиусов планеты, период обращения — от нескольких часов до более года. Считают, что некоторые спутники были захвачены гравитационным притяжением планеты. Они имеют неправильные орбиты и иногда обращаются в направлении, противоположном орбитальному движению планеты вокруг Солнца (т.н. обратное движение). Орбиты С.е. могут быть сильно наклонены к плоскости орбиты планеты или очень вытянуты. Протяженные системы С.е. с регулярными орбитами вокруг четырех планет-гигантов, вероятно, возникли из газопылевого облака, окружавшего родительскую планету, подобно образованию планет в протосолнечной туманности. С.е. размерами меньше неск. сотен километров имеют неправильную форму и, вероятно, образовались при разрушительных столкновениях более крупных тел. Во внеш. областях Солнечной системы они часто обращаются вблизи колец. Элементы орбит внеш. С.е., особенно эксцентриситеты, подвержены сильным возмущениям, вызванных Солнцем. Неск. пар и даже троек С.е. имеют периоды обращения, связанные простым соотношением. Напр., спутник Юпитера Европа имеет период, почти равный половине периода Ганимеда. Такое явление называется резонансом.
2. Определение условий видимости планеты Меркурий по данным «Школьного астрономического календаря».
БИЛЕТ № 12
1. Кометы и астероиды. Основы современных представлений о происхождении Солнечной системы.
Комета, небесное тело Солнечной системы, состоящее из частиц льда и пыли, движущиеся по сильно вытянутым орбитам, на значит, расстоянии от Солнца выглядят слабо светящимися пятнышками овальной формы. По мере приближения к Солнцу вокруг этого ядра образуются кома (Почти сферическая газопылевая оболочка, окружающая голову кометы при ее приближении к Солнцу. Эта «атмосфера», непрерывно сдуваемая солнечным ветром, восполняется газом и пылью, улетучивающимися из ядра. Диаметр К. достигает 100 тыс. км. Скорость убегания газа и пыли составляет несколько километров в секунду относительно ядра, и они рассеиваются в межпланетном пространстве частично через хвост кометы.) и хвост (Поток газа и пыли, образующийся под действием светового давления и взаимодействия с солчным ветром из рассеивающейся в межпланетном пространстве атмосферы кометы. У большинства комет X. появляется, когда они приближаются к Солнцу на расстояние меньше 2 а.е. X. всегда направлен от Солнца. Газовый X. образован ионизованными молекулами, выброшенными из ядра, под воздействием солнечного излучения имеет голубоватую окраску, отчетливые границы, типичная ширина 1 млн. км, длина — десятки миллионов километров. Структура X. может заметно меняться в течение неск. часов. Скорость отдельных молекул колеблется от 10 до 100 км/сек. Пылевой X. более расплывчатый и искривленный, причем его кривизна зависит от массы пылевых частиц. Пыль непрерывно выделяется из ядра и увлекается потоком газа.). Центр, часть К. называется ядром и представляет собой ледянистое тело — остатки