Закономерности суточного и годового хода температур.




Суточный ход температуры воздуха отражает суточный ход температуры земной поверхности, но моменты максимума и минимума температуры несколько запаздывают. Максимум температуры воздуха над сушей наблюдается в 14–15 ч, над водоемами – около 16 ч, минимум над сушей – вскоре после восхода Солнца, над водоемами – спустя 2–3 ч после восхода Солнца. Разницу между суточным максимумом и минимумом температуры воздуха называют суточной амплитудой температуры. Она зависит от ряда факторов: широты места, времени года, характера подстилающей поверхности (суша или водоем), облачности, рельефа, абсолютной высоты местности, характера растительности и т. д. В общем над сушей она гораздо больше (особенно летом), чем над Океаном. С высотой суточные колебания температуры затухают: над сушей – на высоте 2–3 км, над Океаном – ниже.

Годовой ход температуры воздуха – изменение среднемесячных температур воздуха в течение года. Он тоже повторяет годовой ход температуры деятельной поверхности. Годовая амплитуда температуры воздуха – разность среднемесячных температур самого теплого и самого холодного месяцев. Ее величина зависит от тех же факторов, что и суточная амплитуда температур, и обнаруживает сходные закономерности: она растет с увеличением географической широты вплоть до полярных кругов (рис. 29). Это связано с разным притоком солнечного тепла летом и зимой, главным образом из-за меняющегося угла падения солнечных лучей и за счет разной продолжительности суточного освещения в течение года в умеренных и высоких широтах. Весьма важен и характер подстилающей поверхности: над сушей годовая амплитуда больше – она может доходить до 60–65 °С, а над водой – обычно менее 10–12 °С

11. Принципы воздействия температуры на организм; верхний и нижний температурные пороги жизни и отдельных биологических процессов.

Температурные пороги жизни. Объективная зависимость скорости реакций от температуры уже исходно определяет, что жизненные функции могут протекать лишь в определенном интервале температур. Имеется ряд дополнительных обстоятельств, определяющих температурные пороги, выше и ниже которых жизнь невозможна. Видовая специфика ферментных систем приводит к тому, что эти пороги неодинаковы для разных видов живых организмов.

Верхний температурный порог жизни теоретически определяется температурой свертывания белков. Необратимые нарушения структуры белков обычно возникают при температуре порядка 60°С. Именно таков порог «тепловой смерти» у ряда простейших и некоторых низших многоклеточных организмов. Обезвоживание организма повышает этот порог, а соответственно и термоустойчивость организма. Именно на этом основана высокая термоустойчивость цист, спор, семян, да и некоторых мелких организмов в обезвоженном состоянии. У более сложно организованных растений и животных тепловая гибель обычно наступает при более низких температурах. Основная причина ее — рассогласование обменных процессов. У животных большое значение имеют нарушения деятельности нервной системы и ее регуляторных функций.

Нижний температурный порог жизни. Нарушения метаболических и регуляторных процессов наступают и при очень низких температурах. Дисгармония функции в целом организме определяется, как и при гипертермии, разной величиной коэффициента температурных ускорений отдельных реакций. Например, нарушения деятельности сердца при слабом охлаждении проявляются в ритме сокращений и сократимости сердечной мышцы, а при более сильном — в ее проводимости и возбудимости. При одном и том же снижении температуры удлинение периода диастолы выражено сильнее, чем систолы. Важное значение в определении нижнего температурного порога жизни имеют структурные изменения в клетках и тканях, связанные с замерзанием внеклеточной и внутриклеточной жидкостей. При образовании кристаллов льда механически повреждаются ткани, что часто служит непосредственной причиной Холодовой гибели. Кроме того, образование льда нарушает обменные процессы: обезвоживание цитоплазмы влечет за собой повышение концентрации солей, нарушение осмотического равновесия и денатурацию белков.

Рассмотренные закономерности отражают зависимость обменных реакций от температуры тела. Последняя же в большинстве случаев не идентична температуре среды; она устанавливается в результате баланса тепла между организмом и внешней средой. Постоянно происходящий обмен тепла (теплообмен) организма со средой зависит от рада факторов и в принципе складывается из двух противоположных процессов:

притока тепла,

отдачи его во внешнюю среду.

Поступление тепла в организм из внешней среды идет путем теплопроводности и радиации; кроме того, в любом живом организме продуцируется эндогенное тепло как результат всех метаболических реакций.

К пойкилотермным (изменчивый, меняющийся) организмам относят все таксоны органического мира, кроме двух классов позвоночных животных — птиц и млекопитающих. Принципиальная особенность теплообмена пойкилотермных организмов заключается в том, что благодаря относительно низкому уровню метаболизма главным источником поступления тепловой энергии у них является внешнее тепло. Скорость изменений температуры тела пойкилотермов связана обратной зависимостью с их размерами. Это прежде всего определяется соотношением массы и поверхности: у более крупных форм относительная поверхность тела уменьшается, что ведет к уменьшению скорости потери тепла. Изменчивость температуры влечет за собой соответствующие изменения скорости обменных реакций. Поскольку динамика температуры тела пойкилотермных организмов животных определяется изменениями температуры среды, интенсивность метаболизма также оказывается в прямой зависимости от внешней температуры. Скорость потребления кислорода, в частности, при быстрых изменениях температуры следует за этими изменениями, увеличиваясь при повышении ее и уменьшаясь при снижении.

12. Типы теплогобмена:пойкилотермные (холоднокровные), гомойотермные (теплокровные) и гетеротермные животные.

Пойкилотермные организмы - представители большинства видов живых организмов не обладают способностью активной терморегуляции своего тела. Их активность зависит прежде всего от тепла, поступающего извне, а температура тела -- от величины температуры окружающей среды.

Гомойотермные организмы - теплокровные животные (птицы, млекопитающие, в том числе человек), которые способны сохранять постоянную температуру тела независимо от внешних условий.

Гетеротермные организмы - организмы, впадающие в неблагоприятный период года в спячку или временное оцепенение. В активном состоянии они поддерживают высокую температуру тела, а в случае низкой активности организма -- пониженную, что сопровождается замедлением процессов обмена веществ и, как следствие, низкой теплоотдачей.

13) Механизмы, регулирующие постоянную температуру тела. Морфологические, физиологические и поведенческие адаптации пойкилотермных организмов к переохлаждению и перегреву.

Человеку присуща гомеотермичность, т. е. почти постоянная внутренняя температура тела на протяжении всей жизни. Температура тела отражает равновесие между образованием тепла и его отдачей. Нарушение этого равновесия приводит к изменению температуры тела. Способность организма поддерживать постоянную внутреннюю температуру зависит от возможности уравновешивать количество тепла, образующегося при метаболизме и поступающего из окружающей среды, с тем его количеством, которое отдает тело.

 

Механизмы:

1. Проведение и конвекция

Проведение тепла представляет собой передачу тепла от одного объекта к другому вследствие прямого молекулярного контакта.

Конвекция — передача тепла через движущийся поток воздуха или жидкости.

2. Радиация

В состоянии покоя радиация — основной процесс передачи телом избыточного количества тепла. При нормальной комнатной температуре тело обнаженного человека передает около 60 % "лишнего" тепла посредством радиации. Тепло передается в форме инфракрасных лучей, представляющих собой тип электромагнитной волны. Значи-тельное количество тепла тело человека получает за счет солнечной тепловой радиации.

3. Испарение

Испарение — основной процесс рассеяния тепла при выполнении физических упражнений. При мышечной деятельности за счет испарения организм теряет около 80 % тепла, тогда как в состоянии покоя — не более 20 %. Некоторое испарение происходит незаметно для нас, однако поскольку жидкость испаряется, теряется и тепло. Это так называемые неощущаемые теплопотери, которые имеют место, когда жидкость организма вступает в контакт с внешней средой, например, в легких, в слизистой оболочке (покрывающей полости рта, носа), на поверхности кожи.

 

Пойкилотермные организмы — организмы, температура тела которых непостоянна и изменяется вместе с температурой окружающей среды. К ним относятся все растения, грибы, протисты, беспозвоночные животные, рыбы, земноводные и пресмыкающиеся.

 

Адаптации:

• Морфологические адаптации. Уменьшению потерь тепла у организмов способствуют теплоизолирующие покровы. Пресмыкающиеся имеют роговой покров, птицы — перьевой, млекопитающие — волосяной. Сохранению тепла способствует подкожный жир, особенно выраженный у обитателей холодного климата (ластоногие и китообразные).

• Физиологические адаптации. У пойкилотермных организмов регуляция теплообмена происходит благодаря особенностям строения кровеносной системы. Большое значение для терморегуляции у пойкилотермных животных имеет наличие артериовенозных «теплообменников». Сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи. Кровь кожи согревает кровь мышц, и в глубь тела она поступает теплой. Отдав свое тепло, охлажденная мышечная кровь вновь направляется к поверхности тела. При увеличении температуры окружающей среды у ящериц, например, увеличивается скорость тока крови по сосудам. У млекопитающих с короткой и редкой шерстью важную роль в терморегуляции играют сосудистые реакции. Расширение или сужение мелких поверхностных сосудов кожи усиливает или снижает теплоотдачу.

• Поведенческие адаптации. У пойкилотермных животных существует два типа поведенческих адаптаций. Это активный выбор мест с наиболее благоприятным температурным режимом и смена поз.

В первом случае насекомые, пресмыкающиеся и земноводные активно отыскивают освещенные солнцем места. У водных животных перемещение происходит между мелководными, хорошо прогреваемыми зонами и более глубоководными прохладными участками. Смена поз позволяет изменять поверхность тела, прогреваемую солнечными лучами.

14) Реакция растений на температуру. Значение температуры для осуществления онтогенеза растений. Экологические группы растений по отношения к теплу

Реакции на температуру, так же как и на свет, у растений; могут быть и качественными и количественными. Скорости почти всех химических процессов в растении с повышением температуры градуально (т. е. плавно) возрастают, достигают некоторого максимума, а затем снижаются. В отличие от этого многие онтогенетические процессы, например прорастание семян и прерывание покоя почек, часто регулируются по принципу «всё или ничего». В последних случаях для низкотемпературной индукции требуется непрерывное воздействие в течение какого-то минимального периода; это напоминает фотопериодическую индукцию, при которой тоже необходимы совершенно определенные периоды темноты.

Градуальные реакции

Скорость большинства химических процессов неуклонно возрастает с повышением температуры По неизвестным нам причинам температурные оптимумы для разных растений очень сильно различаются, и это указывает на то, что какой-то фундаментальный биохимический процесс у них обладает различной чувствительностью к температуре. большинство растений повреждается температурами выше примерно 30 °С, хотя ферменты или органеллы, выделенные из растений, при таких температурах обычно не повреждаются. Одно из возможных объяснений состоит в том, что мембраны клеток или их органелл чувствительны к изменениям температуры из-за плавления или затвердевания жирных кислот в фосфолипидах.

Морфогенетические эффекты

Очень малая скорость химических реакций в растении при низких температурах обеспечивает координацию изменений роста с климатическими изменениями. Кроме того, температура влияет на многие процессы, чувствительные к фотопериоду, изменяя критическую длину темного периода, хотя механизм этого явления не выяснен Некоторые растения можно заставить цвести с помощью длинных темных ночей или низких ночных температур.

 

По отношению к температуре растения делятся на следующие группы:

1. мегатермофиты - жаростойкие растения, например пальмы;

2. мезотермофиты - теплолюбивые растения, например орех обманчивый, близкий к ореху грецкому;

3. микротермофиты - холодостойкие растения, например ель сибирская;

4. гекистотермофиты - очень холодостойкие растения, например лишайники.

17.

Солнечная радиация — это совокупность солнечной материи и энергии, поступающей на Землю. Энергия распространяется в виде электромагнитных волн со скоростью 300 рентгеновских лучей, включая видимую часть спектра.

Электромагнитный спектр солнечной радиации состоит из инфракрасной, видимой и ультрафиолетовой частей. Поскольку их кванты обладают различной энергией, то они оказывают разнообразное действие на человека.

Результатом воздействия инфракрасного излучения является тепловой эффект, который сопровождается расширением кровеносных сосудов, усилением кровотока и кожного дыхания. Происходит расслабление сосудов и мышц, обладающее болеутоляющим и противовоспалительным эффектом. Мягкое тепло стимулирует образование и усвоение биологически активных веществ.

Видимое излучение оказывает значительное фотохимическое действие, благодаря которому в окружающих тканях происходят весьма важные для организма процессы. Именно кванты видимого света активизируют работу зрительного анализатора, и человек видит мир во всём многообразии красок. Солнечный свет активизирует обменные процессы в организме, стимулирует работу коры головного мозга, улучшает эмоциональное состояние человека. Именно свет синхронизирует суточные и сезонные ритмы у человека, определяя время сна и бодрствования. Их нарушение приводит к бессоннице, ухудшению трудоспособности и депрессии.

Ультрафиолетовая часть является жизненно важным фактором. Её недостаток приводит к ослаблению иммунитета, обострению хронических заболеваний и функциональным расстройствам нервной системы, тормозит выработку жизненно необходимых веществ.

Чрезвычайно велико и гигиеническое значение солнечной радиации. Поскольку видимый свет является решающим фактором в получении информации о внешнем мире, в помещении необходимо обеспечивать достаточный уровень освещённости. Его регламентирование производится согласно СНиП, которые для солнечной радиации составляются с учётом свето-климатических особенностей различных географических зон и учитываются при проектировании и строительстве различных объектов.

Биологическое действие видимой части солнечного спектра:

1. Стимулирующее действие на ЦНС, обменные процессы в организме, специфическое действие на зрительный анализатор, установление биоритмов.

2. Специфическое действие на кожу и глаза, общее тепловое воздействие на организм.

3. Общестимулирующее действие на организм, повреждающее действие за счет бактерицидного эффекта.

4. Общестимулирующее действие на организм, эритемно-загарное действие антирахитический и слабо-бактерицидный эффекты.

5. Стимулирующее действие на ЦНС, установление биоритмов, повреждающее действие за счет бактерицидного эффекта.

Жизнь на планете всегда происходила в условиях ритмически меняющейся среды. Постоянная смена дня и ночи, регулярные сезонные изменения фотопериода (=соотношения светлого и темного времени суток) и климата явились причиной того, что живые организмы выработали определенные связи ритмов своей биологической активности с суточной и сезонной цикликой условий среды. У большинства организмов биологические ритмы активности так или иначе синхронизированы с закономерными изменениями светового режима – фотопериодическая регуляция биоритмов. Исключения: - обитатели морских глубин; обитатели пещер; обитатели экваториальных регионов, где фотопериод не меняется по сезонам.

Наиболее выражены суточные и сезонные ритмы биологической активности.

Основой периодических изменений функций организма человека являются суточные биоритмы. Благодаря им человек может напряженно работать в часы оптимального состояния организма, используя периоды относительно низкого функционирования для восстановления сил.

На все внешние воздействия человек реагирует в зависимости от фазы ритма, его силы и направленности реакции.

Фаза биологических ритмов характеризуется положением колеблющейся системы в определенный момент времени. В период взаимодействия одного ритма с другим происходит совпадение или расхождение фаз. Резкое изменение внешних условий может привести к сдвигу фаз, который наблюдается, например, при перелетах человека на большие расстояния или при резкой смене климата.

Сила суточных ритмов определяется амплитудой колебания физиологических процессов, которые непосредственно зависят от ряда внешних факторов. Амплитуда одних функций может значительно увеличиваться в течение суток, других - уменьшаться, а третьих - изменяться вокруг среднего уровня в ту или другую сторону. Например, допустимо превышение концентрации биологически активных веществ в крови на 50% среднесуточной величины, а температура тела может колебаться лишь в пределах 1°С.

В современной науке суточные ритмы человека используют в качестве универсального критерия оценки состояния здоровья.

Суточный ритм температуры тела, выполняющий роль своеобразного биологического синхронизатора, имеет огромное значение для адаптации организма к постоянно меняющимся условиям окружающей среды.

Суточная динамика температуры тела имеет волнообразный характер. Минимальное значение ее приходится на промежуток времени от 1 часа ночи до 5 часов утра, а максимальное - к 18 часам. Амплитуда колебания составляет 0,6 - 1о С.

Физиологические ритмы- непрерывная циклическая деятельность всех органов, систем, отдельных клеток организма, обеспечивающая выполнение их функций и протекающая независимо от социальных и геофизических факторов.

• Физиологические биоритмы сформировались в процессе эволюции в результате возрастания функциональной нагрузки на отдельные клетки, органы, системы.

• Значение физиологических ритмов заключается в обеспечении оптимального функционирования клеток, органов и систем организма. Исчезновение физиологических биоритмов означает прекращение жизни. Возможность изменения частоты физиологических ритмов обеспечивает быструю адаптацию организма к различным условиям жизнедеятельности.

Солнечный свет - мощное лечебное и профилактическое средство, исключительно важное для сохранения здоровья. Действие волшебных ультрафиолетовых лучей на организм неодинаково и зависит от длины волны. Одни из них оказывают витаминообразующее действие - способствуют образованию в коже витамина D. Витаминообразующее влияние Ультрафиолетового излучения прежде всего связано с его влиянием на синтез витамина Д (кальциферола). Наличие этого витамина необходимо для поддержания постоянного уровня в крови кальция. При недостатке кальция в крови, он «высасывается» из костной ткани, приводя к её деформации, остеопорозу. УФ-лучи повышают сопротивляемость организма к инфекционным и вирусным заболеваниям. Процент содержания антител в крови повышается. Образование антител дает организму дополнительную силу сопротивления вирусным заболеваниям, таким как ветрянка, краснуха и оспа. Кроме вышеперечисленного, солнечные лучи стимулируют продукцию специальных веществ – эндорфинов, которые поднимают уровень настроения и в целом положительно влияют на эмоциональное состояние. Дефицит природной солнечной радиации (в связи с климатическими условиями, возрастом, различными заболеваниями, вынужденным длительным пребыванием в замкнутых помещениях) сопряжен с неблагоприятными последствиями. Он пагубно влияет на общее самочувствие человека, его нервно-психический тонус, снижает умственную и физическую работоспособность, сопротивляемость к инфекционным и другим заболеваниям, усиливает опасность переломов и других поражений опорно-двигательного аппарата, замедляет выздоровление и восстановительные процессы.

19.Адаптиционые режимы ритм. Биологические ритмы у человека. Биологические ритмы в популяциях: суточные. сезонные, годовые, многолетние. Приспособление организмов к сезонным изменениям в природе.

БИОЛОГИЧЕСКИЕ РИТМЫЧЕЛОВЕКА

Суточные ритмы по «биологическим часам»

РАННЕЕ УТРО

4-5 часов (по реальному, географическому времени, как и для акупунктурных точек) — организм готовится к пробуждению.

К 5 часам утра начинает снижаться продукция мелатонина, растёт температура тела.

Незадолго до пробуждения, около 5:00 часов утра по географическому, реальному местному времени, в организме начинается подготовка к предстоящему бодрствованию: нарастает продукция «гормонов активности» — кортизола, адреналина. В крови увеличивается содержание гемоглобина и сахара, учащается пульс, повышается артериальное давление (АД), углубляется дыхание. Начинает повышаться температура тела, увеличивается частота фаз быстрого сна, растет тонус симпатической нервной системы. Все эти явления усиливаются под действием света, тепла и шума.

УТРО

К 7-8 часам у «сов» — пик выброса в кровь кортизола (основного гормона надпочечников). У «жаворонков» — раньше, в 4-5 ч, у остальных хронотипов — около 5-6 ч.

С 7 до 9 утра — подъём, физкультура, завтрак.

9 часов — высокая работоспособность, быстрый счёт, хорошо работает кратковременная память.

С утра — усвоение новой информации, на свежую голову.

Через два-три часа после пробуждения — поберечь сердце.

9-10 ч — время строить планы, «шевелить мозгами». «Утро вечера мудренее»

9-11 ч — повышается иммунитет.

Эффективны лекарства, усиливающие сопротивляемость организма болезням.

ДЕНЬ

До 11 часов — организм в отличной форме.

12 — уменьшить физические нагрузки.

Активность головного мозга снижается. Кровь приливает к органам пищеварения. Постепенно начинает снижаться артериальное давление, пульс и мышечный тонус, соответственно, но температура тела растёт и дальше.

13 ± 1 час — обеденный перерыв

13-15 — полуденный и послеобеденный отдых (обед, «тихий час», сиеста)

После 14 часов — минимальна болевая чувствительность, наиболее эффективно и продолжительно действие обезболивающих препаратов.

15 — работает долговременная память. Время — вспомнить и хорошо запомнить нужное.

После 16 — подъём работоспособности.

15-18 ч — самое время заняться спортом. Жажду, в это время, обильно и часто утолять чистой кипяченой водой, горячей или тёплой — в зимнее время (для профилактики простуд, желудочно-кишечных заболеваний и болезней почек). Летом можно и холодную минералку.

16-19 — высокий уровень интеллектуальной активности. Домашние дела

ВЕЧЕР

19 ± 1 час — ужин.

Углеводная пища (натуральная — мёд и т.п.) способствует выработке особого гормона — серотонина, который благоприятствует хорошему ночному сну. Мозг активен.

После 19 часов — хорошая реакция

После 20 часов психическое состояние стабилизируется, улучшается память. После 21 часа почти в 2 раза возрастает количество белых кровяных телец (повышается иммунитет), температура тела понижается, продолжается обновление клеток.

С 20 до 21 — для здоровья полезна лёгкая физкультура, пешие прогулки на свежем воздухе

После 21 часа — организм готовится к ночному отдыху, температура тела понижается.

22 часа — время для сна. Иммунитет усилен, чтобы охранять организм во время ночного отдыха.

НОЧЬ

В первой половине ночи, когда преобладает медленный сон, выделяется максимальное количество соматотропного гормона, стимулирующего процессы клеточного размножения и роста. Недаром говорят, что во сне мы растем. Происходит регенерация и очищение тканей тела.

2 часа — у тех, кто не спит в это время, возможно состояние депрессии.

3-4 часа — самый глубокий сон. Минимальны температура тела и уровень кортизола, максимально содержание мелатонина в крови.

 

Биологические циклы в жизни животных: суточные, сезонные, многолетние

Биологические ритмы представляют собой периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. Они в той или иной форме присущи всем живым организмам и отмечаются на всех уровнях организации: от внутриклеточных процессов до биосферных. Биологические ритмы наследственно закреплены и являются следствием естественного отбора и адаптации организмов. Ритмы бывают:

• внутрисуточные,

• суточные,

• сезонные,

• годичные,

• многолетние.

Биологические ритмы делят на:

• экзогенные,

• эндогенные.

Экзогенные (внешние) ритмы возникают как реакция на периодические изменения среды (смену дня и ночи, сезонов, солнечной активности). Эндогенные (внутренние) ритмы генерируются самим организмом. Ритмичность имеют процессы синтеза ДНК, РНК и белков, работа ферментов, деление клеток, биение сердца, дыхание и т.д. Внешние воздействия могут сдвигать фазы этих ритмов и менять их амплитуду.

Биологические ритмы — периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. Например, ритмичность в делении клеток, синтезе ДНК и РНК, секреции гормонов, суточное движение листьев и лепестков в сторону Солнца, осенние листопады, сезонное одревеснение зимующих побегов, сезонные миграции птиц и млекопитающих и т.д.

Биологические ритмы — это колебания смены и интенсивности физиологических реакций, в основе которых лежат изменения метаболизма биологических систем, обусловленные влиянием внешних и внутренних факторов.

Суточные биологические ритмы выражаются в закономерных колебаниях физиологических явлений и поведения животных в течение суток. В основе их лежат автоматические механизмы, которые корректируются воздействием внешних факторов — суточными колебаниями освещённости, температуры, влажности и др. Суточные биоритмы ярко выражены у животных, время активной деятельности и отдыха у разных видов меняется по-разному. Дневные животные добывают пищу днем, для ночных (совы, летучие мыши) — период бодрствования наступает с темнотой.

В основе сезонных биоритмов лежат те же изменения обмена веществ, регулируемые у животных с помощью гормонов. В разные сезоны меняются состояние и поведение организмов в пределах популяции или биоценоза:

• происходит накопление (расходование) резервных веществ,

• смена покровов (линька),

• начинаются (заканчиваются) размножение, миграции животных, спячка и другие сезонные явления.

Будучи в значительной мере автоматизированными, эти явления корректируются внешними влияниями (состоянием погоды, запасов пищи и т.п.).

Многолетние биологические ритмы обусловливаются циклическими колебан

Приспособление организмов к сезонным изменениям в природе

Сезонная периодичность относится к числу наиболее общих явлений в живой природе. Она особенно ярко выражена в умеренных и северных широтах. В основе внешне простых и хорошо знакомых нам сезонных явлений в мире организмов лежат сложные приспособительные реакции ритмического характера, которые выяснены сравнительно недавно.

Сезонность в природе

В качестве примера рассмотрим сезонную периодичность в центральных районах Российской Федерации - рисунок 34. Здесь ведущее значение для растений и животных имеет годовой ход температуры. Период, благоприятный для жизни, продолжается около шести месяцев.

 

Рисунок 34. Сезонные изменения длины дня, температуры и количества осадков в окрестностях Москвы.

Признаки весны появляются, как только начинает сходить снег. Еще не распустив листья, зацветают некоторые ивы, ольха, лещина; на проталинах даже сквозь снег пробиваются ростки первых весенних растений; прилетают перелетные птицы; появляются перезимовавшие насекомые.

В середине лета, несмотря на благоприятную температуру и обилие осадков, рост многих растений замедляется или полностью прекращается. Уменьшается количество цветущих растений. Заканчивается размножение птиц. Вторая половина лета и ранняя осень — период созревания плодов и семян у большинства растений и накопления питательных веществ в их тканях. В это время уже заметны признаки подготовки к зиме. У птиц и млекопитающих начинается осенняя линька, перелетные птицы сбиваются в стаи.

Еще до прихода устойчивых морозов в природе наступает период зимнего покоя.

Состояние зимнего покоя

Зимний покой не просто остановка развития, вызванная низкой температурой, а очень сложное физиологическое приспособление. У каждого вида состояние зимнего покоя наступает лишь на определенной стадии развития. Так, у растений (в зависимости от вида) зимуют семена, надземные и подземные части с покоящимися почками, а у некоторых травянистых растений — прикорневые листья. На разных стадиях развития наступает зимний покой у насекомых. Малярийный комар и бабочки-крапивницы зимуют в стадии взрослого насекомого, бабочки-капустницы — в стадии куколки, непарный шелкопряд — в стадии яйца.

Зимующие стадии растений и животных имеют много сходных физиологических особенностей. Значительно снижена интенсивность обмена. Ткани организмов, находящихся в состоянии зимнего покоя, содержат много запасных питательных веществ, особенно жиров и углеводов, за счет которых поддерживаются сниженные процессы обмена в течение зимовки. Обычно уменьшается количество воды в тканях, особенно в семенах, зимних почках растений. Благодаря всем этим особенностям покоящиеся стадии способны длительно переживать суровые условия зимовки.

 

20. Классификация животных по отношению к свету: дневные, ночные, сумеречные виды. Экологические группы растений по отношению к свету: гелиофиты(светолюбивые), сциофиты (тенелюбивые), факультативные гелиофиты (теневыносливые)

 

Экологические группы животных по отношению к свету и их адаптивные способности

Для животных солнечный свет не является таким необходимым фактором, как для растений. Тем не менее, разные виды животных нуждаются в свете определённого спектрального состава, интенсивности и длительности освещения. Отклонения от нормы подавляют их жизнедеятельность и приводят к гибели.

Различают светолюбивые виды - фотофиллыи тенелюбивые- фотофобы.

Рассеянные, отражённые от окружающих предметов лучи, воспринимаемые органами зрения животных, дают им значительную часть информации о внешнем мире. Полнота зрительного восприятия зависит от степени эволюционного развития: у беспозвоночных- глаза это просто светочувствительные клетки. Образное видение возможно при сложном устройстве глаза. Пауки могут различать контуры движущихся предметов на расстоянии 1-2 см. наиболее совершенные органы зрения- глаза позвоночных, головоногих моллюсков и насекомых. Объемное зрение зависит от угла расположения глаз и от степени перекрывания их полей зрения (человек, приматы, совы, соколы, грифы). Животные, у которых глаза расположены по бокам головы, имеют монокулярное, плоскостное зрение.

Некоторые животные (змеи) видят инфракрасную часть спектра и ловят добычу в темноте. Для пчёл видимая часть спектра сдвинута в более коротковолновую область. Они воспринимают УФЛ, но не различают красный свет.

Кроме эволюционного уровня, развитие зрения и его особенности зависят от экологической обстановки и образа жизни конкретных видов. У постоянных обитателей пещер, куда не проникает солнечный свет, глаза могут быть полностью или частично редуцированы, как, например, у слепых жуков жужелиц и др.

Способность к различению цвета в значительной мере зависит и от того, при каком спектральном составе излучения существует или активен вид. Большинство млекопитающих, ведущих происхождение от предков с сумеречной и ночной активностью, плохо различают цвета и видят все в черно-белом изображении (собачьи, кошачьи, хомяки и др.). Такое же зрение характерно для ночных птиц (совы, козодои). Дневные птицы имеют хорошо развитое цветовое зрение.

Жизнь при сумеречном освещении приводит часто к гипертрофии глаз. Огромные глаза, способные улавливать ничтожные доли света, свойственны ведущим ночной образ жизни лемурам, обезьянам лори, долгопятам, совам и др.

Животные ориентируются с помощью зрения во время дальних перелетов и миграций. Птицы, например, с поразительной точностью выбирают направление полета, преодолевая иногда многие тысячи километров от гнездовий до мест зимовок. Доказано, что при таких дальних перелетах птицы хотя бы частично ориентируются по Солнцу и звездам, т. е. астрономическим источникам света. При вынужденном отклонении от курса они способны к навигации, т. е. к изменению ориентации, чтобы попасть в нужную точку Земли. При неполной облачности ориентация сохраняется, если видна хотя бы часть неба. В сплошной туман птицы не летят или, если он застает их в пути, продолжают лететь вслепую и часто сбиваются с курса.

Днем птицы учитывают не только положение Солнца, но и смещение его в связи с широтой местности и временем суток. Опыты в планетарии показали, что ориентация птиц в клетках меняется, если менять перед ними картину звездного неба в соответствии с направлением предполагаемого перелета. Навигационная способность птиц врожденная. Она не приобретается за счет жизненного опыта, а создается естественным отбором как система инстинктов. Точные механизмы такой ориентации еще плохо изучены. Способность к такой ориентации свойственна и другим животным. Среди насекомых она особенно развита у пчел. Пчелы, нашедшие нектар, передают другим информацию о том куда лететь, используя в качестве ориентира положение Солнца. Пчела-разведчица, возвращается в улей и начинает насотах танец, совершая повороты. При этом она описывает фигуру в виде восьмерки, поперечная ось которой наклонена по отношению к вертикали. Угол наклона соответствует углу между направлениями на Солнце и на источник корма.

Экологические группы растений по отношению к свету

В зависимости от обеспеченности растения солнечным светом выделяют следующие группы растений:

• гелиофиты (они же световые растения, светолюбы)

Это растения, живущие на открытых пространствах, с избытком солнечного света. При его недостатке быстро хиреют и даже умирают. К ним относятся береза белая, дуб монгольский, сосна могильная, лишайники кустистые, клевер ползучий, подсолнечник и т.д.

• сциофиты (они же гелиофобы, теневые растения, тенелюбы)

Это растения, живущие в замкнутых пространствах леса. Прекрасно чувствуют себя в полутемных и влажных лесных «коридорах». При воздействии прямых солнечных лучей свыше 20-30 минут погибают от перегрева. К ним относятся кислица, папоротники, мхи, плауны, хвощи, молодая поросль хвойных деревьев.

• факультативные гелифиты (они же теневыносливые растения)

Это большинство растений, произрастающих в России. Отдают предпочтения светлым местам, но могут свободно переносить небольшое затемнение. К ним относятся клен остролистный, липа, многие кустарнички (малина, смородина, боярышник) и травы (подорожник, тысячелистник, василек, иван-да-марья).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: