Физические основы гемореологии




Министерство образования Российской Федерации

Пензенский Государственный Университет

Медицинский Институт

Кафедра Терапии

 

Зав. кафедрой д.м.н.

 

Реферат

на тему:

«РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ И ИХ НАРУШЕНИЯ ПРИ ИНТЕНСИВНОЙ ТЕРАПИИ»

 

Выполнила: студентка V курса

Проверил: к.м.н., доцент

 

Пенза


План

 

Введение

1. Физические основы гемореологии

2. Причина «неньютоновского поведения» крови

3. Основные детерминанты вязкости крови

4. Гемореологические нарушения и венозные тромбозы

5. Методы изучения реологических свойств крови

Литература


Введение

Гемореология изучает физико-химические свойства крови, которые определяют ее текучесть, т.е. способность к обратимой деформации под действием внешних сил. Общепринятой количественной мерой текучести крови является ее вязкость.

Ухудшение текучести крови типично для больных, находящихся в отделении интенсивной терапии. Повышенная вязкость крови создает дополнительное сопротивление кровотоку и поэтому сопряжена с избыточной постнагрузкой сердца, микроциркуляторными расстройствами, тканевой гипоксией. При гемодинамическом кризе вязкость крови возрастает и из-за снижения скорости кровотока. Возникает порочный круг, который поддерживает стаз и шунтирование крови в микроциркуляторном русле.

Расстройства в системе гемореологии представляют собой универсальный механизм патогенеза критических состояний, поэтому оптимизация реологических свойств крови является важнейшим инструментом интенсивной терапии. Уменьшение вязкости крови способствует ускорению кровотока, увеличению DO2 к тканям, облегчению работы сердца. С помощью реологически активных средств можно предотвратить развитие тромботических, ишемических и инфекционных осложнений основного заболевания.

В основу прикладной гемореологии положен ряд физических принципов текучести крови. Их понимание помогает выбрать оптимальный метод диагностики и лечения.


Физические основы гемореологии

 

В нормальных условиях почти во всех отделах кровеносной системы наблюдают ламинарный тип кровотока. Его можно представить в виде бесконечного множества слоев жидкости, которые движутся параллельно, не смешиваясь друг с другом. Некоторые из этих слоев соприкасаются с неподвижной поверхностью — сосудистой стенкой и их движение, соответственно, замедляется. Соседние слои по-прежнему стремятся в продольном направлении, но более медленные пристеночные слои их задерживают. Внутри потока, между слоями возникает трение. Появляется параболический профиль распределения скоростей с максимумом в центре сосуда. Пристеночный слой жидкости можно считать неподвижным. Вязкость простой жидкости остается постоянной (8 с. Пуаз), а вязкость крови меняется в зависимости от условий кровотока (от 3 до 30 с Пуаз).

Свойство крови оказывать «внутреннее» сопротивление тем внешним силам, которые привели ее в движение, получило название вязкости η. Вязкость обусловлена силами инерции и сцепления.

При показателе гематокрита, равном 0, вязкость крови приближается к вязкости плазмы.

Для корректного измерения и математического описания вязкости вводят такие понятия, как напряжение сдвига с и скорость сдвига у. Первый показатель представляет собой отношение силы трения между соседними слоями к их площади — F/S. Он выражается в дин/см2 или паскалях*. Второй показатель является градиентом скорости слоев — дельта V/L. Его измеряют в с-1.

В соответствии с уравнением Ньютона напряжение сдвига прямо пропорционально скорости сдвига: τ= η·γ. Это означает, что чем больше разница скорости между слоями жидкости, тем сильнее их трение. И, наоборот, выравнивание скорости слоев жидкости уменьшает механическое напряжение по линии водораздела. Вязкость в данном случае выступает в качестве коэффициента пропорциональности.

Вязкость простых, или ньютоновских, жидкостей (например, воды) постоянна при любых условиях движения, т.е. между напряжением сдвига и скоростью сдвига для этих жидкостей существует прямолинейная зависимость.

В отличие от простых жидкостей кровь способна менять свою вязкость при изменении скоростного режима кровотока. Так, в аорте и магистральных артериях вязкость крови приближается к 4—5 относительным единицам (если принять вязкость воды при 20 °С в качестве эталонной меры). В венозном же отделе микроциркуляции, несмотря на малое напряжение сдвига, вязкость возрастает в 6—8 раз относительно своего уровня в артерии (т.е. до 30—40 относительных единиц). При крайне низких, нефизиологических скоростях сдвига вязкость крови может возрасти в 1000 раз (!).

Таким образом, зависимость между напряжением сдвига и скоростью сдвига для цельной крови носит нелинейный, экспоненциальный характер. Подобное «реологическое поведение крови»* называют «неньютоновским».



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: