Общая характеристика работы. Научная новизна результатов диссертационных исследований состоит в следующем




Методы и средства цифровой коррекции изображения в оптико-электронных системах визуализации

Автореферат

диссертация на соискание ученой степени кандидата технических наук


Общая характеристика работы

Актуальность. Одной из наиболее явных тенденций развития современных оптико-электронных систем визуализации, и, в частности, тепловизионных, является использование в их составе матричных приемников излучения. В последние годы все большее распространение в таких системах находят неохлаждаемые болометрические матричные приемники (микроболометры). Микроболометры, как правило, не требуют криогенной системы охлаждения, и, следовательно, тепловизионный модуль имеет меньшие энергопотребление, габариты и массу. Производство микроболометрических матриц на основе оксида ванадия или на кремниевой основе значительно дешевле, чем охлаждаемых фотоприемников. Однако, применение матричных приемников излучения, в частности, микроболометрических, ведет к необходимости учета и компенсации ряда факторов, связанных с дискретностью структуры приемника, заметно влияющих на качество получаемых изображений. К ним относятся искажения из-за дискретизации изображения наблюдаемой сцены, из-за неоднородности параметров и характеристик отдельных чувствительных элементов матричных приемников. К недостаткам микроболометрических матриц относится также высокий уровень шума.

Развитие современной микроэлектроники позволяет успешно внедрять методы коррекции изображения электронными средствами, в первую очередь, цифровые, основанные на использовании многоэлементных матричных приемников излучения и цифровых компонентов (аналого-цифровые и цифро-аналоговые преобразователи, интегральные схемы), осуществляющие обработку видеоизображения, полученного в оптико-электронной системе в реальном масштабе времени. Наибольшие успехи в этой области связаны с широким распространением цифровой аппаратуры видео- и фотосъемки, а также с развитием алгоритмов сжатия для передачи в сетях информационной коммуникации и хранения видеоданных. Возможность хранения цифрового изображения в памяти позволяет производить совмещение двух изображений, стабилизацию, построение панорамного изображения и другие операции.

 

Рис. 1. Обобщенная структурная схема современной тепловизионной системы «смотрящего» типа с микроболометрической матрицей

 

На рис. 1 приведена обобщенная структурная схема современной тепловизионной системы «смотрящего» типа с микроболометрической матрицей. Применяемые микроболометрические матрицы снабжены системой поддержания температуры на подложке чувствительных элементов. Параметры работы матрицы (уровень сигнала, чувствительность, внутренняя температура) задаются набором входных напряжений, поступающих с блока управления и питания матрицы. Для проведения калибровки предусмотрен узел шторки, расположенный между объективом и матрицей. В некоторых системах предусмотрена система фокусировки по получаемому изображению. Микроболометрическая матрица формирует аналоговый сигнал, который в дальнейшем оцифровывается на АЦП. Блок цифровой обработки сигнала производит обработку оцифрованного сигнала для дальнейшего его представления на встроенном дисплее или на внешнем устройстве отображения. В данной диссертации блок цифровой обработки сигнала построен на базе программируемой логической интегральной схемы (ПЛИС), либо на базе цифрового сигнального процессора (Digital Signal Processor ‑ DSP). Настройка и управление системой производится либо с пульта управления, либо с ПК через стандартные интерфейсы.

Требования к результатам цифровой обработки тепловизионного изображения, получаемого с микроболометрических матриц, очень часто аналогичны требованиям, предъявляемым к телевизионному изображению, несмотря на то, что качество изображений, получаемых с микроболометрических матриц, хуже, чем с фотоприемных матриц, работающих в видимом диапазоне. Цифровой обработке изображений в отечественной и зарубежной литературе посвящено большое число работ (У. Прэтт, Р. Гонсалес, Р. Вудс, Б. Яне, Д.А. Форсайт, Ж. Понс, С. Уэлстид, Д.С. Лебедев, В.А. Сойфер, И.И. Цуккерман, Л.П. Ярославский и многие другие). Тем не менее, развитые сегодня методы цифровой обработки изображения, используемые в видео- и фототехнике, применительно к неохлаждаемым тепловизионным системам нуждаются в существенном совершенствовании, что связано со сравнительно большой неоднородностью параметров и характеристик матричных микроболометров, нелинейностью их характеристик, высоким уровнем шумов и, как правило, низким контрастом самой сцены. Необходимость коррекции и ослабления влияния этих факторов на видеоизображение и определяет актуальность темы диссертации.

Целью работы является разработка алгоритмов цифровой обработки, позволяющих улучшить качество тепловизионого видеоизображения, получаемого при помощи микроболометрической матрицы.

Для достижения этой цели решались следующие задачи:

анализ и совершенствование методов компенсации неоднородности параметров и характеристик элементов микроболометрической матрицы;

разработка алгоритмов компенсации шумов и образования высококонтрастных изображений, получаемых с помощью микроболометрической матрицы;

разработка метода определения взаимного сдвига, масштабирования и поворота двух кадров видеоизображения.

Методы исследования. Все разработанные методы и алгоритмы были предварительно протестированы на персональных компьютерах. В качестве тестовых видеоданных применялись необработанные цифровыми методами видеопоследовательности, записанные после оцифровки с микроболометрической матрицы тепловизора. После тестирования на персональном компьютере алгоритм переносился на тепловизионные системы, разработанные в ОАО «ЦНИИ «Циклон». Для реализации использовались либо язык C и C++ в среде программирования Texas Instruments Code Composer Studio для DSP-процессоров TMS320C6200 и TMS320C6400, либо язык Verilog HDL в среде Xilinx ISE для ПЛИС Xilinx XC2S200 и XC2VP4.

Научная новизна результатов диссертационных исследований состоит в следующем:

обосновано применение трехточечной многотабличной калибровки для существенного улучшения качества изображения в тепловизионных системах на основе микроболометрических матриц;

построена система алгоритмов (замещения дефектных элементов матрицы, компенсации шумов, повышения контраста, автофокусировки), использующая результаты применения общего для всех них фильтра, что позволяет оптимизировать вычислительный процесс;

обнаружено наличие искажений равномерности по всему кадру дисперсии шумов после геометрических преобразований (масштабирование, поворот) равномерно зашумленных белым шумом изображений;

разработан быстрый алгоритм автоматической регулировки уровней яркостей, который эффективен в случае обработки изображений с широким диапазоном яркостей;

разработан алгоритм поиска и коррекции геометрического рассогласования двух кадров для произвольного угла их взаимного поворота.

Практическая ценность работы состоит в том, что в целях улучшения качества изображения на выходе тепловизионых систем «смотрящего» типа, использующих микроболометрические матрицы, разработана и реализована целостная система алгоритмов цифровой обработки видеоизображения.

Основные положения, выносимые на защиту:

многотабличная трехточечная калибровка в тепловизионных системах с микроболометрами позволяет обеспечивать требуемое качество изображения в широком диапазоне температур наблюдаемых сцен;

для реализации ряда алгоритмов (замещения дефектных элементов матрицы, компенсации шумов, повышения контраста и автофокусировки) возможно использование общего фильтра размытия;

для компенсации искажений равномерности дисперсии шумов по кадру после геометрических преобразований (масштабирование, поворот) равномерно зашумленных белым шумом изображений возможно использовать предложенный метод, основанный на использовании фильтра размытия;

предложенный быстрый алгоритм автоматической регулировки уровней яркостей эффективен в случае обработки изображений с широким диапазоном яркостей;

используя алгоритм, основанный на сборе статистики по окружностям на изображении, можно найти геометрическое рассогласование двух кадров для произвольного угла их взаимного поворота;

Апробация работы. Основные положения докладывались на научно-практических конференциях международных форумов «Оптика-2006» и «Оптика-2007» и на международном форуме «Научная сессия МИФИ-2007» (12 докладов). Реализация алгоритмов была осуществлена на тепловизионных системах, разработаных в ОАО «ЦНИИ «Циклон» на базе DSP-процессора TMS320C6400 и ПЛИС Xilinx XC2S200, XC2VP4.

Публикации. По результатам диссертационной работы опубликовано 7 научно-технических статей, из них одна в журнале, включенном в перечень ВАК.

Достоверность полученных в работе алгоритмов подтвердилась в процессе проводимых исследований и испытаний в ОАО «ЦНИИ «Циклон» в рамках ОКР: «Модуль МБ-2», «Филин», «Обзор-ТМ1», «Шахин», «Аврора», «Сыч-3», «Скопа-3» и др.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: