Кафедра «Материаловедения»
РЕФЕРАТ
По дисциплине: «Материаловедение»
На тему:
Порошковые и композиционные материалы
Выполнил:
студент группы ___________
Relax
Проверил:
Тюмень 2001
Содержание
I. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ | ||
Композиционные материалы | ||
Карбоволокниты | ||
Бороволокниты | ||
Органоволокниты | ||
Металлы, армированные волокнами | ||
II. ПОРОШКОВЫЕ СПЛАВЫ | ||
III. ОСНОВЫПРОИЗВОДСТВА ПОРОШКОВЫХ СПЛАВОВ | ||
Производство порошков | ||
Испытание порошков | ||
Прессование | ||
Спекание | ||
IV. ТВЕРДЫЕ СПЛАВЫ | ||
Микроструктура | ||
Область применения | ||
Схема производства | ||
VI. ПРОЧИЕ ПОРОШКОВЫЕ СПЛАВЫ | ||
Антифрикционные сплавы | ||
Фрикционные материалы | ||
Пористые фильтры | ||
Керметы СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ | ||
I. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
Композиционные материалы — это искусственные материалы, получаемые сочетанием компонентов с различными свойствами. Одним из компонентов является матрица (основа), другим - упрочнители (волокна, частицы). В качестве матриц используют полимерные, металлические, керамические и углеродные материалы. Упрочнителями служат волокна - стеклянные, борные, углеродные, органические, нитевидные кристаллы (карбидов, берилов, нитридов и др.) и металлические проволоки, обладающие высокой прочностью и жесткостью. При составлении композиции эффективно используются индивидуальные свойства составляющих композиций. Свойства композиционных материалов зависят от состава компонентов, количественного соотношения и прочности связи между ними. Комбинируя объемное содержание компонентов, можно, в зависимости от назначения, получать материалы с требуемым и значениями прочности, жаропрочности, модуля упругости или получать композиции с необходимыми специальными свойствами, например магнитными и т. п.
|
Содержание упрочнителя в композиционных материалах составляет 20-80 % по объему. Свойства матрицы определяют прочность композиционного материала при сжатии и сдвиге. Свойства упрочнителя определяют прочность.
Композиционные материалы имеют высокую прочность, жесткость, жаропрочность и термическую стабильность. Так, для карбоволокнитов d=650-1700 МПа, а для бороволокнитов d=900-1750 МПа. Плотность композиционных материалов 1,35- 1,8 г/см^3 Композиционные материалы являются весьма перспективными конструкционными материалами для многих отраслей машиностроения.
Карбоволокниты (углепласты) - это композиции из полимерной матрицы и упрочнителей в виде углеродных волокон. Для полимерной матрицы используются полиимиды, эпоксидные и фенол формальдегидные смолы. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидов можно применять при температуре до 300°С Они водо- и химостойки. Карбоволокниты содержат, наряду с угольными, стеклянные волокна, что удешевляет материал. Карбоволокниты используют в химической, судостроительной и авиационной промышленности.
При обработке обычных полимерных карбоволокнитов в инертной или восстановительной атмосфере получают графитированные карбоволокниты или Карбоволокниты на углеродной матрице. Так, карбоволокнит на углеродной матрице типа КУП-ВМ по прочности и ударной вязкости в 5—10 раз превосходит специальные графиты: При нагреве в инертной атмосфере он сохраняет прочность до 2200*C. Карбоволокниты с углеродной матрицей широко применяют при изготовлении химической аппаратуры.
|
Бороволокниты — это композиции из полимерного связующего и упрочнителя - борных волокон. Для получения бороволокнитов применяют модифицированные эпоксидные и полиимидные связующие. Бороволокниты имеют высокую прочность при сжатии, сдвиге, высокую твердость, тепло- и электропроводность. Бороволокниты водо- и химостойки. Изделия из бороволокнитов применяют в космической и авиационной технике (лопатки и роторы компрессоров, лопасти винтов вертолетов и т. д.).
Органоволокниты - это композиции из полимерного связующего и упрочнителей из синтетических волокон. Упрочнителями служат эластичные волокна, лавсан, капрон, нитрон и др. Связующими служат полиимиды, эпоксидные и фенолформальдегидные смолы. Органоволокниты имеют малую плотность, сравнительно высокую ударную вязкость. Органоволокниты применяют в авиационной технике, электропромышленности, химическом машиностроении и др.
Металлы, армированные волокнами - композиционные материалы с металлической матрицей и упрочнителями в виде волокон. Упрочнителями служат волокна бора, углеродные волокна, нитевидные кристаллы тугоплавких соединений, вольфрамовая или стальная проволока. Матричный материал выбирают из учета назначения композиционного материала (коррозионная стойкость, сопротивление окислению и др.). В качестве матриц используют легкие и пластичные металлы, алюминий, магний и их сплавы. Количество упрочнителя составляет по объему 30-50%. Металлы, армированные волокнами, применяются в авиационной и ракетной технике.
|
Использование композиционных материалов требует в ряде случаев создания новых методов изготовления деталей и изменения принципов конструирования деталей и узлов машин.
II. ПОРОШКОВЫЕ СПЛАВЫ
Сплавы, изготовляемые из металлических порошков путем прессования и спекания без расплавления или с частичным расплавлением наиболее легкоплавкой составляющей их, называются порошковыми.
Несмотря на то, что объем производства порошковых сплавов невелик и составляет всего 0,1% от общего объема производства металлов, они имеют очень большое значение в народном хозяйстве и область их применения чрезвычайно широка. При этом изготовление многих сплавов практически возможно только из порошка, например, изготовление твердых металлокерамических сплавов, керметов, сплавов из тугоплавких металлов — вольфрам, молибден, тантал, ниобий — или композиций этих металлов с легкоплавкими металлами, или из металлов с неметаллическими материалами. Многие детали из порошковых сплавов отличаются лучшими качествами и дешевле, чем из обычных металлов.
Области применения и составы порошковых сплавов приведены в табл. 1.
Особенно велико значение порошковой металлургии в новых отраслях техники: атомной и химической промышленности, ракетной технике, реактивных двигателях, радио- и электротехнике, энергетической промышленности и в производстве особо жаропрочных сплавов.