Некоторые значения тригонометрических функций




Формулы тройных углов

 

 

Обратные тригонометрические функции

 

 

Некоторые значения тригонометрических функций

таблица 3

Аргумент Функция
sin a cos a tg a ctg a
15°
18°
36°
54°
72°
75°

 

 


 

 


Алгебраические функции — это функции, заданные аналитическим выражением, в записи которого используются алгебраические операции над числами и переменной (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня).

 

у = 2 х + 3,

 

Числовая прямая — это математическая модель для представления чисел, в которой каждое число соответствует точке на прямой, причем расстояние от точки до начала отсчета равно модулю числа:

 

 
 

 


Признаки числовой прямой:

1) начало отсчета;

2) единичный отрезок;

3) положительное направление (стрелка).

 

 


Чтобы решить простейшее тригонометрическое неравенство нужно:

 

1. Провести прямую к линии соответствующей функции.

2. Выделить дугу, на которой лежат решения неравенства.

3. Найти концы этой дуги, помня, что обход совершается против часовой стрелки от меньшего числа к большему.

4. Прибавить к концам интервала числа, кратные периоду функции.

 

 

Решить неравенство .

Решение.

 

Все решения, удовлетворяющие заданному неравенству, лежат на дуге l. Найдем ее концы:

С учетом периода синуса, запишем ответ:

.

Ответ:

 


 


Если правая часть уравнения — отрицательное число, то следует воспользоваться свойствами соответствующих обратных тригонометрических функций, тогда:

 

 
 


При а = 1; 0; –1 решение уравнения записывается в виде (n Î Z):

 


Единичная окружность — это окружность, радиус которой принят за единицу измерения.

 

Числовая окружность — это единичная окружность с установленным соответствием между действительными числами и точками окружности:

           
   
 
   
 
 

 

 


Указанное соответствие можно определить следующим образом: каждому числу a соответствует такая точка Р числовой окружности, чтобы дуга È ОР имела длину |a| и была отложена в положительном направлении если a > 0 и в отрицательном, если a < 0:

 

Признаки числовой окружности:

1) начало отсчета – правый конец горизонтального диаметра;

2) единичный отрезок – длина радиуса окружности;

3) положительное направление – против часовой стрелки.

 

 
 


Откладывать можно дуги какой угодно длины. То есть числовую окружность можно рассматривать как окружность радиуса 1, на которую «намотана» числовая прямая:

 
 

 

 


 

 


Угол в 1 ° — это центральный угол, опирающийся на дугу, длина которой равна части окружности.

 

Угол поворота — это угол, полученный вращением луча около его начала О от начального положения ОА до конечного положения ОВ.

 

Угол в 1 радиан — это центральный угол, опирающийся на дугу, длина которой равна радиусу окружности.

 

 

 
 


Радианная мера угла численно равна пути, который проходит точка по дуге единичной окружности, на которую опирается этот угол:

 

 

Для связи радианов и градусов используют развернутый угол:

 
 

 


1. Говорят: «угол радиан» или чаще «угол ». Обозначение «радиан» или «рад», как правило, опускают.

2. Термин «радианное измерение углов» равносилен термину «числовое измерение углов», т.е. фраза «угол a равен двум радианам» равносильна фразе «угол a равен числу 2» и даже «угол a равен двум». Поэтому вопрос типа «Чему равно?» некорректен. Нужно спрашивать: «Чему равен угол?» (60°) или «Чему равно число?» (» 1,05).

 

 


Арксинусом числа а называется такое число х из интервала , синус которого равен а.

 

 
 


Арккосинусом числа а называется такое число х из интервала [0; p], косинус которого равен а.

 

 
 

 


Арктангенсом числа а называется такое число х из интервала , тангенс которого равен а.

 

 

Арккотангенсом числа а называется такое число х из интервала (0; p), котангенс которого равен а.

 

 

 
 


1. Для отрицательных значений аргумента:

 
 

 

 


2. Из определения аркфункции сразу следует, что:

 
 

 

VI. Формулы половинного аргумента (знак – по функции в левой части):

 

VII. Формулы сумм:

 

VIII. Формулы произведений:

 

IX. Универсальная тригонометрическая подстановка:

X. Некоторые дополнительные формулы:

 

 


á Полный ñ оборот — это угол поворота, равный 2p рад (или 360°).

       
   
 
 

 

 


Некоторые положения конечной точки угла поворота:

 
 

 


 

 


Функция косинус — это функция, которая ставит в соответствие каждому числу t абсциссу точки М (t) координатной окружности.

 

Функция синус — это функция, которая ставит в соответствие каждому числу t ординату точки М (t) координатной окружности.

 

Если М (t) = М (х; у),
то х = cos t, у = sin t

Таким образом,

М (t) = М (cos t; sin t)

 

 
 


Запись М(t) показывает положение точки М на координатной окружности, а запись М(cos t; sin t) – положение той же точки на координатной плоскости.

 

Функция тангенс — это частное от деления функции синус на функцию косинус.

 

Функция котангенс — это частное от деления функции косинус на функцию синус.

 
 


Поскольку деление на нуль невозможно, функции tg t и ctg t определены не для всех значений аргумента. Тангенс определен лишь для значений аргумента, при которых cos t ¹ 0, котангенс определен при sin t ¹ 0:

 

 

 

Тригонометрические функции — это общее название функций синус, косинус, тангенс и котангенс.

 

I. Основное тригонометрическое тождество и следствия из него:

 

II. Формулы (теоремы) сложения аргументов:

 

III. Формулы приведения:

1) функция меняется на кофункцию при переходе через вертикальную ось и не меняется при переходе через горизонтальную;

2) перед приведенной функцией ставится знак приводимой функции, считая a углом первой четверти.

 

IV. Формулы двойного аргумента:

 

V. Формулы понижения степени:


Значения тригонометрических функций
некоторых углов

таблица 1

            p  
sin a         –1
cos a       –1  
tg a      
ctg a      

 

 

Связь между тригонометрическими функциями
одного аргумента

таблица 2

Искомая функция Выражение искомой функции через
sin a cos a tg a сtg a
sin a = sin a
cos a = cos a
tg a = tg a
сtg a = сtg a

6. Графики тригонометрических функций

 

 

Тригонометрический набор координат:

 
 

 


у = sin x синусоида

 

у = cos x á ко ñ синусоида

 

у = tg x у = ctg x

тангенсоида á ко ñ тангенсоида

 
 

 

 

7. Свойства синуса и косинуса

 

 


Линия синусов Область значений Знаки по четвертям Четность – нечетность
     
|sin t | £ 1   sin(– t) = –sin t

 

 

Линия косинусов Область значений Знаки по четвертям Четность – нечетность
     
|cos t | £ 1   cos(– t) = cos t

 

Область определения
D (sin) = R D (cos) = R
Область значений
E (sin) = [–1; 1] E (cos) = [–1; 1]
Четность – нечетность
нечетная функция четная функция
Периодичность
sin(x ± 2p) = sin x cos(x ± 2p) = cos x

8. Свойства тангенса и котангенса

 

 

Линия тангенсов Область значений Знаки по четвертям Четность – нечетность
     
tg t Î (–¥; +¥)   tg(– t) = –tg t

 

 

Линия котангенсов Область значений Знаки по четвертям Четность – нечетность
ctg t Î (–¥; +¥)   ctg(– t) = –ctg t

 

Область определения
Область значений
E (tg) = (–¥; +¥) E (ctg) = (–¥; +¥)
Четность – нечетность
нечетная функция нечетная функция
Периодичность
tg(x ± p) = tg x ctg(x ± p) = ctg x

 

 

 

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-03-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: