Система счисления - принятый способ записи чисел и сопоставления этим записям реальных значений. Все системы счисления можно разделить на два класса: позиционные и непозиционные. Для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называется основанием системы счисления. В позиционной системе счисления число может быть представлено в виде суммы произведений коэффициентов на степени основания системы счисления:
AnAn-1An-2 … A1,A0,A-1,A-2 =
АnВn + An-1Bn-1 +... + A1B1 + А0В0 + A-1B-1 + А-2В-2 +...
(знак «точка» отделяет целую часть числа от дробной; знак «звездочка» здесь и ниже используется для обозначения операции умножения). Таким образом, значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Именно поэтому такие системы счисления называют позиционными.
23,43(10) = 2*101 + З*10° + 4*10-1 + З*10-2
692(10) = 6* 102 + 9*101 + 2.
1101(2)= 1*23 + 1*22+0*21+ 1*2°;
112(3) = l*32+ 1*31 +2*3°;
341,5(8) =3*82+ 4*81 +1*8° +5*8-1;
A1F4(16) = A*162 + 1*161 + F*16° + 4*16-1.
При работе с компьютерами приходится параллельно использовать несколько позиционных систем счисления (чаще всего двоичную, десятичную и шестнадцатиричную), поэтому большое практическое значение имеют процедуры перевода чисел из одной системы счисления в другую. Заметим, что во всех приведенных выше примерах результат является десятичным числом, и, таким образом, способ перевода чисел из любой позиционной системы счисления в десятичную уже продемонстрирован.
Отметим, что кроме рассмотренных выше позиционных систем счисления существуют такие, в которых значение знака не зависит от того места, которое он занимает в числе. Такие системы счисления называются непозиционными. Наиболее известным примером непозиционной системы является римская. В этой системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам:
1(1) V(5) X(10) L(50) С (100) D(500) M(1000)
Примеры: III (три), LIX (пятьдесят девять), DLV (пятьсот пятьдесят пять).
Недостатком непозиционных систем, из-за которых они представляют лишь исторический интерес, является отсутствие формальных правил записи чисел и, соответственно, арифметических действий над ними.
Основные арифметические действия в двоичной системе счисления.
В двоичной системе счисления арифметические операции выполняются по тем же правилам, что и в десятичной системе счисления, т.к. они обе являются позиционными (наряду с восьмеричной, шестнадцатеричной и др.).
Сложение
Сложение одноразрядных двоичных чисел выполняется по следующим правилам:
0 + 0 = 01 + 0 = 10 + 1 = 11 + 1 = 10В последнем случае, при сложении двух единиц, происходит переполнение младшего разряда, и единица переносится в старший разряд. Переполнение возникает в случае, если сумма равна основанию системы счисления (в данном случае это число 2) или больше его (для двоичной системы счисления это не актуально).
Сложим для примера два любых двоичных числа:
1101+ 101 ------ 10010Вычитание
Вычитание одноразрядных двоичных чисел выполняется по следующим правилам:
0 - 0 = 01 - 0 = 10 - 1 = (заем из старшего разряда) 11 - 1 = 0Пример:
1110- 101 ---- 1001Умножение
Умножение одноразрядных двоичных чисел выполняется по следующим правилам:
0 * 0 = 01 * 0 = 00 * 1 = 01 * 1 = 1Пример:
1110* 10------+ 0000 1110 ------ 11100Деление
Деление выполняется так же как в десятичной системе счисления:
1110 | 10 |----10 | 111---- 11 10---- 10 10---- 0
Таблицы сложения в других системах счисления легко составить, используя Правило Счета.
Сложение в восьмеричной системе
![]() |
Сложение в шестнадцатеричной системе
ПРАВИЛО При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.