Исследование формы эллипса по его уравнению
Установим форму эллипса, пользуясь его каноническим уравнением.
1. Уравнение (11.7) содержит х и у только в четных степенях, поэтому если точка принадлежит эллипсу, то ему также принадлежат точки , , . Отсюда следует, что эллипс симметричен относительно осей и , а также относительно точки , которую называют центром эллипса.
2. Найдем точки пересечения эллипса с осями координат. Положив , находим две точки и , в которых ось пересекает эллипс (см. рис. 50). Положив в уравнении (11.7) , находим точки пересечения эллипса с осью : и . Точки A 1, A2, B1, B2 называются вершинами эллипса. Отрезки A 1 A2 и B1B2, а также их длины 2 a и 2 b называются соответственно большой и малой осями эллипса. Числа a и b называются соответственно большой и малой полуосями эллипса.
3. Из уравнения (11.7) следует, что каждое слагаемое в левой части не превосходит единицы, т.е. имеют место неравенства и или и . Следовательно, все точки эллипса.лежаї внутри прямоугольника, образованного прямыми .
4. В уравнении (11.7) сумма неотрицательных слагаемых и равна единице. Следовательно, при возрастании одного слагаемого другое будет уменьшаться, т. е. если возрастает, то уменьшается и наоборот.
Из сказанного следует, что эллипс имеет форму, изображенную на рис. 50 (овальная замкнутая кривая).
14. Определение гиперболы. Каноническое уравнение гиперболы. Исследование формы.
Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.
Обозначим фокусы через F1 и F2 расстояние между ними через 2с, а модуль разности расстояний от каждой точки гиперболы до фокусов через 2a. По определению 2a < 2с, т. е. a < c.
|
Для вывода уравнения гиперболы выберем систему координат так, чтобы фокусы F1 и F2 лежали на оси , а начало координат совпало с серединой отрезка F1F2 (см. рис. 53). Тогда фокусы будут иметь координаты и
Пусть — произвольная точка гиперболы. Тогда согласно определению гиперболы или , т.е. . После упрощений, как это было сделано при выводе уравнения эллипса, получим каноническое уравнение гиперболы
(11.9)
(11.10)
Гипербола есть линия второго порядка.
Исследование формы гиперболы по ее уравнению
Установим форму гиперболы, пользуясь ее каноническим уравнением.
1. Уравнение (11.9) содержит «x» и «у» только в четных степенях. Следовательно, гипербола симметрична относительно осей и , а также относительно точки , которую называют центром гиперболы.
2. Найдем точки пересечения гиперболы с осями координат. Положив в уравнении (11.9), находим две точки пересечения гиперболы с осью : и . Положив в (11.9), получаем , чего быть не может. Следовательно, гипербола ось «Оу» не пересекает.
Точки и называются вершинами гиперболы, а отрезок
действительной осью, отрезок — действительной полуосью гиперболы.
Отрезок , соединяющий точки и называется мнимой осью, число b - мнимой полуосью. Прямоугольник со сторонами 2a и 2b называется основным прямоугольником гиперболы.
3. Из уравнения (11.9) следует, что уменьшаемое не меньше единицы, т. е. что или . Это означает, что точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и слева от прямой (левая ветвь гиперболы).
|
4. Из уравнения (11.9) гиперболы видно, что когда возрастает, то и возрастает. Это следует из того, что разность сохраняет постоянное значение, равное единице.
Из сказанного следует, что гипербола имеет форму, изображенную на рисунке 54 (кривая, состоящая из двух неограниченных ветвей).
Асимптоты гиперболы
Прямая L называется асимптотой неограниченной кривой K, если расстояние d от точки M кривой K до этой прямой стремится к нулю при неограниченном удалении точки M вдоль кривой K от начала координат. На рисунке 55 приведена иллюстрация понятия асимптоты: прямая L является асимптотой для кривой К.
Покажем, что гипербола имеет две асимптоты:
(11.11)
Так как прямые (11.11) и гипербола (11.9) симметричны относительно координатных осей, то достаточно рассмотреть только те точки указанных линий, которые расположены в первой четверти.
Возьмем на прямой точку N имеющей ту же абсциссу х, что и точка на гиперболе (см. Рис. 56), и найдем разность ΜΝ между ординатами прямой и ветви гиперболы:
Как видно, по мере возрастания х знаменатель дроби увеличивается; числитель — есть постоянная величина. Стало быть, длина отрезка ΜΝ стремится к нулю. Так как ΜΝ больше расстояния d от точки Μ до прямой, то d и подавно стремится к нулю. Итак, прямые являются асимптотами гиперболы (11.9).
При построении гиперболы (11.9) целесообразно сначала построить основной прямоугольник гиперболы (см. рис. 57), провести прямые, проходящие через противоположные вершины этого прямоугольника, — асимптоты гиперболы и отметить вершины и , гиперболы.
|