Все средства измерений, независимо от их конкретного исполнения, обладают рядом общих свойств, необходимых для выполнения ими их функционального назначения. Технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, называются метрологическими характеристиками. Комплекс нормируемых метрологических характеристик устанавливается таким образом, чтобы с их помощью можно было оценить погрешность измерений, осуществляемых в известных рабочих условиях эксплуатации посредством отдельных средств измерений или совокупности средств измерений, например автоматических измерительных систем.
Одной из основных метрологических характеристик измерительных преобразователей является статическая характеристика преобразования (иначе называемая функцией преобразования или градуировочной характеристикой). Она устанавливает зависимость информативного параметра у выходного сигнала измерительного преобразователя от информативного параметра х входного сигнала.
Статическая характеристика нормируется путем задания в форме уравнения, графика или таблицы. Понятие статической характеристики применимо и к измерительным приборам, если под независимой переменной х понимать значение измеряемой величины или информативного параметра входного сигнала, а под зависимой величиной y – показание прибора.
Если статическая характеристика преобразования линейна, т.е., то коэффициент К называется чувствительностью измерительного прибора (преобразователя). В противном случае под чувствительностью следует понимать производную от статической характеристики.
Важной характеристикой шкальных измерительных приборов является цена деления, т.е. то изменение измеряемой величины, которому соответствует перемещение указателя на одно деление шкалы. Если чувствительность постоянна в каждой точке диапазона измерения, то шкала называется равномерной. При неравномерной шкале нормируется наименьшая цена деления шкалы измерительных приборов. У цифровых приборов шкалы в явном виде нет, и на них вместо цены деления указывается цена единицы младшего разряда числа в показании прибора.
|
Важнейшей метрологической характеристикой средств измерений является погрешность.
Погрешности измерений
Истинное значение физической величины – значение физической величины, которое идеальным образом отражало бы в количественном и качественном отношениях соответствующее свойство объекта (согл. 16263-70).
Результат любого измерения отличается от истинного значения физической величины на некоторое значение, зависящее от точности средств и методов измерения, квалификации оператора, условий, в которых проводилось измерение, и т. д. Отклонение результата измерения от истинного значения физической величины называется погрешностью измерения.
Поскольку определить истинное значение физической величины в принципе невозможно, т. к. это потребовало бы применения идеально точного средства измерений, то на практике вместо понятия истинного значения физической величины применяют понятие действительного значения измеряемой величины, которое настолько точно приближается к истинному значению, что может быть использовано вместо него. Это может быть, например, результат измерения физической величины образцовым средством измерения.
|
Абсолютная погрешность измерения – это разность между результатом измерения и действительным (истинным) значением физической величины:
D = хи - х
Относительная погрешность измерения – это отношение абсолютной погрешности к действительному (истинному) значению измеряемой величины (часто выраженное в процентах):
d = (D/ хи) 100%
Приведенная погрешность – это выраженное в процентах отношение абсолютной погрешности к нормирующему значению L – условно принятому значению физической величины, постоянному во всем диапазоне измерений:
g = (D/ L) 100%
Для приборов с нулевой отметкой на краю шкалы нормирующее значение L равно конечному значению диапазона измерений. Для приборов с двухсторонней шкалой, т. е. с отметками шкалы, расположенными по обе стороны от нуля значение L равно арифметической сумме модулей конечных значений диапазона измерения.
Погрешность измерения (результирующая погрешность) является суммой двух составляющих: систематической погрешности и случайной погрешности.
Систематическая погрешность – это составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины. Причинами появления систематической погрешности могут являться неисправности средств измерений, несовершенство метода измерений, неправильная установка измерительных приборов, отступление от нормальных условий их работы, особенности самого оператора. Систематические погрешности в принципе могут быть выявлены и устранены. Для этого требуется проведение тщательного анализа возможных источников погрешностей в каждом конкретном случае.
|
Систематические погрешности подразделяются на методические, инструментальные и субъективные.
Методические погрешности происходят от несовершенства метода измерения, использования упрощающих предположений и допущений при выводе применяемых формул, влияния измерительного прибора на объект измерения. Например, измерение температуры с помощью термопары может содержать методическую погрешность, вызванную нарушением температурного режима объекта измерения вследствие внесения термопары.
Инструментальные погрешности зависят от погрешностей применяемых средств измерения. Неточность градуировки, конструктивные несовершенства, изменения характеристик прибора в процессе эксплуатации и т. д. являются причинами основных погрешностей инструмента измерения. Дополнительные погрешности, связанные с отклонением условий, в которых работает прибор, от нормальных, отличают от инструментальных (ГОСТ 8.009-84), т. к. они связаны скорее с внешними условиями, чем с самим прибором.
Субъективные погрешности вызываются неправильными отсчетами показаний прибора человеком (оператором). Например, погрешность от параллакса, вызванная неправильным направлением взгляда при наблюдении за показаниями стрелочного прибора. Использование цифровых приборов и автоматических методов измерения позволяет исключить такого рода погрешности.
Во многих случаях систематическую погрешность в целом можно представить как сумму двух составляющих аддитивной Dаи мультипликативной Dм.
Такой подход позволяет легко скомпенсировать влияние систематической погрешности на результат измерения путем введения раздельных поправочных коэффициентов для каждой из этих двух составляющих.
Случайная погрешность – это составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Наличие случайных погрешностей выявляется при проведении ряда измерений постоянной физической величины, когда оказывается, что результаты измерений не совпадают друг с другом. Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения.
Во многих случаях влияние случайных погрешностей можно уменьшить путем выполнения многократных измерений с последующей статистической обработкой полученных результатов.
В некоторых случаях оказывается, что результат одного измерения резко отличается от результатов других измерений, выполненных при тех же контролируемых условиях. В этом случае говорят о грубой погрешности (промахе измерения). Причиной могут послужить ошибка оператора, возникновение сильной кратковременной помехи, толчок, нарушение электрического контакта и т. д. Такой результат, содержащий грубую погрешность необходимо выявить, исключить и не учитывать при дальнейшей статистической обработке результатов измерений.
Класс точности средства измерений – обобщенная характеристика средства измерений, определяемая пределами допускаемых основных и дополнительных погрешностей. Класс точности выбирается из ряда (1; 1,5; 2; 2,5; 4; 5; 6)*10n, где n = 1; 0; -1; -2 и т. д. Класс точности может выражаться одним числом или дробью (если аддитивная и мультипликативная погрешности сопоставимы – например, 0,2/0,05 – адд./мульт.).