Основные положения прочностной теории напряженного состояния




Ельцов Ю.А.

Ижевский государственный технический университет

Статья посвящена теоретическому определению нормальных и касательных напряжений в грунтах. В статье даются основные предпосылки расчета. В известные теории прочности вносятся поправки, которые с точки зрения автора дают более объективные результаты расчетов, подтверждаемые экспериментальными замерами.

В известных теориях прочности исходят из следующих основополагающих гипотез: сплошности среды и равенства нулю начальных (внутренних) напряжений. Исключение внутренних напряжений из рассмотрения не дает полного представления о действительном напряженном состоянии и динамике его развития.

Исходное (начальное) напряженное состояние - это система природных (естественных) внутренне уравновешенных напряжений в твердом теле (среде).

Напряженно-дислоцируемое (возбужденное) состояние, созданное сложением внешних силовых воздействий и внутренних напряжений от температурных, химических и силовых факторов.

Измененное (остаточное) напряженное состояние, возникшее после исключения или ослабления силового воздействия (разгрузки).

Приобретенное (остаточное) напряженное состояние, сформированное под влиянием геохимических, геостатических и геодинамических релаксационных процессов.

Теория прочности Кулона-Мора, характеризующая условия предельного напряженного состояния исходя из принятых геометрических построений, в настоящее время подвергается существенной критике, т.к. устанавливает сложный характер зависимости компонент напряжений от параметров прочности.

В прочностной теории напряжений основным условием является получение простых прямолинейных зависимостей, согласующихся с экспериментальными. Это достигается новыми приемами геометрических построений предельной линии сдвига и кругов напряжений.

При сложном напряженном состоянии () построение кругов напряжений и предельной линии сдвига ведется по схеме рис. 1.Б., когда значения , откладываются от конца отрезка , равного полусумме поперечных напряжений и с поправкой на отклонение центра на угол φ, тогда

; (1)

где .

В этом случае предельная линия сдвига, секущая круги напряжений, в точках с τmax, будет прямой в пределах (одноосного сжатия). Уравнение этой прямой, при подстановке и из (I) в формулу Кулона

(2)

будет иметь вид:

, (3)

где tg φ - модуль трения; с v сцепление связности, характеризующее начальное трение скольжение.

В условиях осевой симметрии () уравнения (1) приобретают вид:

,

. (4)

Отсюда уравнение предельной линии сдвига запишется:

. (5)

При одноосном сжатии имеем:

. (6)

При режиме преодоления "упругих" связей, при одноосном сжатии,

(7)

а при сложном напряженном состоянии, где режим преодоления структурных связей будет происходить когда:

(8)

Внутренне уравновешенное напряженное состояние (остаточные напряжения), в условиях характеризуется напряжениями откладываемыми на отрезке "давление связности" (БО по схеме рис.1.Б.)

(9)

Растяжение реализуется на преодоление сил связности и ведет к ослаблению сцепления связности. Растягивающее напряжение откладывается по отрицательному направлению оси , с возможным переносом на ось (см. схему рис.1.А.). Согласно принятому построению

. (10)

или

.

Произведено уточнение исходных условий осевого растяжения трубчатых образцов, находящихся под внутренним давлением :

, (11)

,

где , см. (1), здесь знак

минус опущен при использовании отрицательного направления оси для удобства написания и расчетов.

Тогда уравнение предельной линии растяжения, аналогично (3), будет иметь вид

. (12)

где и - параметры предельной линии растяжения в условиях сложного напряженного состояния, аналогичные сцеплению и углу внутреннего трения.

Рис. 1. Схемы построений кругов напряжений и предельной линии сдвига.

А - в режиме растяжения: Б - при сложном напряженном состоянии.

Выразив внутреннее сопротивление cp через сопротивление одноосного растяжения , подобно (6), имеем:

, (13)

откуда

(14)

Принятые схемы построения предельной линии сдвига и кругов напряжений позволили установить функциональные связи компонент напряжений от параметров прочности с и φ в разных стадиях и режимах напряженного состояния: в исходном, внутренне уравновешенном; при преодолении упругих и предельных сопротивлений от внешних воздействий; в режимах одноосного сжатия и растяжения. Все основные уравнения проверены по результатам испытаний разнородных материалов и показали удовлетворительную для практики степень сходимости по сравнению с известными решениями.

Важным достижением, подкрепленным опытными данными, является положение о том, что касательные напряжения составляют половину от максимальных нормальных напряжений. Известное же их равенство полуразности нормальных напряжений ведет к нелинейности предельной линии сдвига и затрудняет установление связей между рассматриваемыми параметрами напряженного состояния.

Сопоставление различных теорий

По условию прочности автора По Кулону-Мору-Хиллу
1. Геометрическое построение предельных линий сдвига (ПЛС) не менее чем по 2-3 точкам при
1.1. Размеры откладываются от начала координат, a - от нового начала, смещенного на величину . 1.2. Координаты точек ПЛС находятся по формулам: ; . 1.1. Все размеры и откладываются от одного начала координат. 1.2. , .
2. Вид ПЛС по экспериментальным значениям и
2.1. Прямая в пределах и далее с переломом и уменьшением угла до . 2.1. Прямая в пределах с переломом и выполаживанием при (τ→const).
3. Геометрическое построение ПЛС не менее чем по 2-3 точкам при
3.1. Построение при 3.2. ; , где 3.1. Нет. 3.2. Нет решения.
4. Вид ПЛС по экспериментальным значениям
4. 1. Прямая в пределах 4.1. Нет.
5. Решения и прогнозы
5.1. Однозначное определение прочности (параметров и ). 5.2. Остаточные напряжения отождествляются с Lдавлением связности¦ . 5.3. Связь между одноосным сжатием и растяжением функционально зависит от угла . 5.4. Прогнозируется предшествующее давление испытанное материалом и степень его релаксации. 5.5. Напряженное состояние земной коры обусловлено остаточными напряжениями и пригрузкой вышележащих пород. 5.6. Определяемые параметры прочности и сопоставимы с экспериментальными. 5.7. Однозначное прогнозирование оползневых склонов в состоянии длительной и предельной устойчивости. 5.1. Угол переменный, что затрудняет решение прикладных задач. 5.2. Не устанавливаются. 5.3. Не устанавливается. 5.4. Не устанавливается. 5.5. Отмечается существенное расхождение в значениях касательных напряжений. 5.6. Степень сопоставимости более низкая. 5.7. Вариантное прогнозирование устойчивости.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: