Как ориентируются летучие мыши





Летучие мыши обычно живут огромными стаями в пещерах, в которых они прекрасно ориентируются в полной темноте. Влетая и вылетая из пещеры, каждая мышь издает неслышимые нами звуки. Одновременно эти звуки издают тысячи мышей, но это никак не мешает им прекрасно ориентироваться в пространстве в полной темноте и летать, не сталкиваясь друг с другом. Почему летучие мыши могут уверенно летать в полнейшей темноте, не натыкаясь на препятствия? Удивительное свойство этих ночных животных – умение ориентироваться в пространстве без помощи зрения – связано с их способностью испускать и улавливать ультразвуковые волны.

Оказалось, что во время полёта мышь излучает короткие сигналы на частоте около 80 кГц, а затем принимает отражённые эхо-сигналы, которые приходят к ней от ближайших препятствий и от пролетающих вблизи насекомых.

Для того, чтобы сигнал был препятствием отражён, наименьший линейный размер этого препятствия должен быть не меньше длины волны посылаемого звука. Использование ультразвука позволяет обнаружить предметы меньших размеров, чем можно было бы обнаружить, используя более низкие звуковые частоты. Кроме того, использование ультразвуковых сигналов связано с тем, что с уменьшением длины волны легче реализуется направленность излучения, а это очень важно для эхолокации.

Реагировать на тот или иной объект мышь начинает на расстоянии порядка 1 метра, при этом длительность посылаемых мышью ультразвуковых сигналов уменьшается примерно в 10 раз, а частота их следования увеличивается до 100–200 импульсов (щелчков) в секунду. То есть, заметив объект, мышь начинает щелкать более часто, а сами щелчки становятся более короткими. Наименьшее расстояние, которое мышь может определить таким образом, составляет примерно 5 см.

Во время сближения с объектом охоты летучая мышь как бы оценивает угол между направлением своей скорости и направлением на источник отражённого сигнала и изменяет направление полёта так, чтобы этот угол становился все меньше и меньше.

 

Может ли летучая мышь, посылая сигнал частотой 80 кГц, обнаружить мошку размером 1 мм? Скорость звука в воздухе принять равной 320 м/с. Ответ поясните.

 

Конец формы

 

Начало формы

Для ультразвуковой эхолокации мыши используют волны частотой

1) менее 20 Гц

2) от 20 Гц до 20 кГц

3) более 20 кГц

4) любой частоты

 

Конец формы

 

Начало формы

Умение великолепно ориентироваться в пространстве связано у летучих мышей с их способностью излучать и принимать

 

1) только инфразвуковые волны

2) только звуковые волны

3) только ультразвуковые волны

4) звуковые и ультразвуковые волны

 


Запись звука

Возможность записывать звуки и затем воспроизводить их была открыта в 1877 году американским изобретателем Т.А. Эдисоном. Благодаря возможности записывать и воспроизводить звуки появилось звуковое кино. Запись музыкальных произведений, рассказов и даже целых пьес на граммофонные или патефонные пластинки стала массовой формой звукозаписи.

На рисунке 1 дана упрощенная схема механического звукозаписывающего устройства. Звуковые волны от источника (певца, оркестра и т.д.) попадают в рупор 1, в котором закреплена тонкая упругая пластинка 2, называемая мембраной. Под действием звуковой волны мембрана колеблется. Колебания мембраны передаются связанному с ней резцу 3, острие которого чертит при этом на вращающемся диске 4 звуковую бороздку. Звуковая бороздка закручивается по спирали от края диска к его центру. На рисунке показан вид звуковых бороздок на пластинке, рассматриваемых через лупу.

 

Рис.1

Диск, на котором производится звукозапись, изготавливается из специального мягкого воскового материала. С этого воскового диска гальванопластическим способом снимают медную копию (клише). При этом используется осаждение на электроде чистой меди при прохождении электрического тока через раствор ее солей. Затем с медной копии делают оттиски на дисках из пластмассы. Так получают граммофонные пластинки.

При воспроизведении звука граммофонную пластинку ставят под иглу, связанную с мембраной граммофона, и приводят пластинку во вращение. Двигаясь по волнистой бороздке пластинки, конец иглы колеблется, вместе с ним колеблется и мембрана, причем эти колебания довольно точно воспроизводят записанный звук.

 

При механической записи звука используется камертон. При увеличении времени звучания камертона в 2 раза

 

1) длина звуковой бороздки увеличится в 2 раза

2) длина звуковой бороздки уменьшится в 2 раза

3) глубина звуковой бороздки увеличится в 2 раза

4) глубина звуковой бороздки уменьшится в 2 раза

 

Конец формы

 


 

2. Молекулярная физика

Поверхностное натяжение

В окружающем нас мире повседневных явлений действует сила, на которую обычно не обращают внимания. Сила эта сравнительно невелика, её действие не вызывает мощных эффектов. Тем не менее, мы не можем налить воду в стакан, вообще ничего не можем проделать с той или иной жидкостью без того, чтобы не привести в действие силы, которые называются силами поверхностного натяжения.Эти силы в природе и в нашей жизни играют немалую роль. Без них мы не могли бы писать перьевой ручкой, из неё сразу вылились бы все чернила. Нельзя было бы намылить руки, поскольку пена не смогла бы образоваться. Слабый дождик промочил бы нас насквозь. Нарушился бы водный режим почвы, что оказалось бы гибельным для растений. Пострадали бы важные функции нашего организма.

Проще всего уловить характер сил поверхностного натяжения у плохо закрытого или неисправного водопроводного крана. Капля растёт постепенно, со временем образуется сужение – шейка, и капля отрывается.

Вода оказывается как бы заключённой в эластичный мешочек, и этот мешочек разрывается, когда сила тяжести превысит его прочность. В действительности, конечно, ничего, кроме воды, в капле нет, но сам поверхностный слой воды ведёт себя как растянутая эластичная плёнка.

Такое же впечатление производит плёнка мыльного пузыря. Она похожа на тонкую растянутую резину детского шарика. Если осторожно положить иглу на поверхность воды, то поверхностная плёнка прогнётся и не даст игле утонуть. По этой же причине водомерки могут скользить по поверхности воды, не проваливаясь в неё.

В своём стремлении сократиться поверхностная плёнка придавала бы жидкости сферическую форму, если бы не тяжесть. Чем меньше капелька, тем большую роль играют силы поверхностного натяжения по сравнению с силой тяжести. Поэтому маленькие капельки близки по форме к шару. При свободном падении возникает состояние невесомости, и поэтому дождевые капли почти строго шарообразны. Из-за преломления солнечных лучей в этих каплях возникает радуга.

Причиной поверхностного натяжения является межмолекулярное взаимодействие. Молекулы жидкости взаимодействуют между собой сильнее, чем молекулы жидкости и молекулы воздуха, поэтому молекулы поверхностного слоя жидкости стремятся сблизиться друг с другом и погрузиться вглубь жидкости. Это позволяет жидкости принимать форму, при которой число молекул на поверхности было бы минимальным, а минимальную поверхность при данном объёме имеет шар. Поверхность жидкости сокращается, и это приводит к поверхностному натяжению.

 





Рекомендуемые страницы:


©2015-2019 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных

Обратная связь

ТОП 5 активных страниц!