Спинной мозг лежит в позвоночном канале и у взрослых представ-ляет собой длинный (45 см у мужчин и 41 см у женщин), несколько сплюснутый спереди назад цилиндрический тяж, который вверху переходит в продолговатый мозг, а внизу заканчивается мозговым ко-нусом (рис. 46). От мозгового конуса отходит концевая нить, пред-ставляющая собой атрофированную часть спинного мозга, состоя-щую из продолжения оболочек спинного мозга и прикрепляющуюся ко II копчиковому позвонку.
Спинной мозг новорожденного имеет длину 14 см. Нижняя грани-ца находится на уровне II поясничного позвонка. К 2 годам длина спинного мозга увеличивается до 20 см, а к 10 годам — до 28 см. Наи-более быстро растут грудные сегменты. Масса спинного мозга у ново-рожденного составляет 5 г, в год — 10 г, в 3 года — 13 г, в 7 лет — 19 г, в 14 лет — 22 г.
На своем протяжении спинной мозг имеет два утолщения, соот-ветствующие корешкам нервов верхней и нижней конечностей. Верх-нее называется шейным утолщением, нижнее — пояснично-крестцо-вым. Более обширно последнее, но более дифференцировано первое, так как иннервация руки сложнее. В центре спинного мозга проходит канал, представляющий собой узкую щель, заполненную спинномоз-говой жидкостью. Спинной мозг делится на не полностью симмет-ричные правую и левую половины. У новорожденного центральный канал шире, чем у взрослого. Его просвет уменьшается в течение пер-вых двух лет жизни и в другие периоды, когда увеличивается масса бе-лого и серого вещества. На боковых поверхностях спинного мозга симметрично входят задние (афферентные) и выходят передние (эф-ферентные) корешки спинномозговых нервов. Линии входа и выхода делят каждую половину на три канатика спинного мозга (передний, боковой и задний).
|
С двух сторон из спинного мозга выходят двумя продольными ря-дами корешки 31 пары спинномозговых нервов. В спинном мозге 31 сег-мент, из которых 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых, один копчиковый. Передние корешки спинномозговых нервов состо-ят из аксонов двигательных нейронов, тела которых лежат в спинном мозге. Задние корешки содержат отростки чувствительных нейронов, тела которых располагаются в спинномозговых узлах. На некотором расстоянии от спинного мозга передние и задние корешки соединяются и образуют спинномозговой нерв. Ствол нерва очень короткий, так как при выходе из межпозвоночного отверстия он распадается на вет-ви. В межпозвоночных отверстиях вблизи соединения обоих кореш-ков задний корешок имеет утолщение — спинномозговой узел, содер-жащий тела чувствительных нейронов с одним отростком, который делится на две ветви. Одна из них (центральная) идет в составе задне-го корешка в спинной мозг, другая (периферическая) — продолжается в спинномозговой нерв. В узле отсутствуют синапсы, так как лежат только афферентные нейроны.
Участок спинного мозга, соответствующий каждой паре кореш-ков, называется сегментом (рис. 47). Спинной мозг состоит из серого вещества, содержащего нервные клетки, и белого вещества, образо-ванного нервными волокнами. Серое вещество расположено внутри спинного мозга и со всех сторон окружено белым веществом. Объем его увеличивается быстрее в первые два года жизни ребенка. На попе-речном разрезе серое вещество напоминает букву Н. Оно образует две вертикальные колонны, помещенные в правой и левой половинах спинного мозга. Посередине находится центральный канал со спин-номозговой жидкостью. Сверху он сообщается с четвертым желудоч-ком головного мозга, а внизу заканчивается концевым желудочком. В каждой колонне есть передние и задние рога, причем первые шире вторых. На протяжении грудного отдела и в I—III сегментах пояснич-ного отдела спинного мозга, помимо передних и задних рогов, име-ются боковые рога, состоящие из симпатических нервных клеток. В них заложены тела нейронов, иннервирующих внутренние органы. Их аксоны идут в составе передних корешков. В передних рогах нахо-дятся двигательные нервные клетки, а в задних рогах — вставочные нейроны. Чувствительные нервные клетки расположены не в спин-ном мозге, а по ходу чувствительных нервов в межпозвоночных от-верстиях — в спинномозговых узлах.
|
Белое вещество образовано нервными отростками, организован-ными в проводящие пути. По проводящим путям проходят импульсы в восходящем направлении от чувствительных и вставочных нейро-нов и в нисходящем — от клеток вышележащих нервных центров к двигательным нейронам.
Задние канатики содержат восходящие пути, представленные тон-ким и клиновидным пучками. Они проводят к коре головного мозга сознательную проприоцептивную (мышечно-суставное чувство), кож-ную чувствительность (чувство стереогноза — узнавание предметов
Боковые канатики содержат восходящие и нисходящие пути. Вос-ходящие пути представлены задним и передним спиномозжечковыми путями, проводящими бессознательные проприоцептивные импульсы к мозжечку (бессознательная координация движения); спинопокры-шечным и боковым спинобугорным путем (болевая и температурная чувствительность). К нисходящим путям относятся латерально-спин-номозговой (пирамидный) путь, проводящий сознательные двигатель-ные импульсы, и красноядерно-спинномозговой путь, проводящий непроизвольные двигательные импульсы.
|
Передние канатики содержат нисходящие пути: передний корково-спинномозговой (пирамидный), проводящий двигательные импульсы; текто-спинномозговой, осуществляющий защитные движения при зрительных и слуховых раздражениях; предцверно-спинномозговой, проводящий импульсы, обеспечивающие равновесие тела; ретику-лоспинномозговой.
В спинном мозге замыкается большое количество рефлексов, регу-лирующих как соматические, так и вегетативные функции организма. Наиболее простые — это сухожильные рефлексы и рефлексы растя-жения, имеющие моносинаптический характер. Сухожильные реф-лексы вызываются ударом по сухожилию и имеют диагностическое значение в неврологической практике. Рефлекторная реакция прояв-ляется в виде резкого сокращения мышцы. К сухожильным относятся коленный рефлекс, ахиллов рефлекс, рефлексы двуглавой и трехгла-вой мышц верхней конечности, рефлексы нижней челюсти.
Более сложный характер имеют сгибательные рефлексы и рефлексы положения. Сгибательные рефлексы направлены на избежание различ-ных повреждающих воздействий. Ритмические рефлексы характери-зуются скоординированной работой мышц конечностей и туловища, правильным чередованием сгибания и разгибания конечностей. По-зные рефлексы направлены на поддержание определенной позы, что возможно лишь при наличии определенного мышечного тонуса.
Кроме замыкания соматических рефлексов спинной мозг обеспе-чивает рефлекторную регуляцию внутренних органов, являясь центром висцеральных рефлексов. Эти рефлексы осуществляются с помощью расположенных в боковых рогах серого вещества нейронов вегетатив-ной нервной системы. Аксоны этих нейронов покидают спинной мозг через передние корешки и заканчиваются на клетках ганглиев. Ганг-лионарные нейроны, в свою очередь, посылают аксоны к клеткам различных внутренних органов, в том числе к гладким мышцам ки-шечника, сосудов, мочевого пузыря, к железистым клеткам и сердеч-ной мышце.
Спинной мозг имеет твердую, паутинную и мягкую соединитель-нотканные оболочки, продолжающиеся в такие же оболочки голов-ного мозга.
Твердая (наружная) мозговая оболочка обтекает его снаружи в виде мешка. Она не прилегает вплотную к стенкам позвоночного канала, которые покрыты надкостницей. Между надкостницей и твердой оболочкой находится эпидуральное пространство. В нем залегают жировая клетчатка и венозные сплетения. Вверху твердая оболочка срастается с краями большого отверстия затылочной кости, внизу на уровне II—III крестцовых позвонков суживается в виде нити и при-крепляется к копчику. Твердая оболочка мозга у новорожденного тон-кая, сращена с костями, отростки оболочки развиты слабо.
Паутинная (средняя) мозговая оболочка в виде тонкого прозрачного бессосудистого листка прилегает изнутри к твердой оболочке. Между твердой и паутинной оболочками находится субдуральное простран-ство. Между паутинной и внутренней оболочкой находится подпау-тинное пространство, в котором мозг и корешки лежат свободно и ок-ружены большим количеством спинномозговой жидкости. Жидкость подпаутинного пространства спинного мозга непрерывно сообщает-ся с жидкостью подпаутинных пространств головного мозга и мозго-вых желудочков. У детей подпаутинное пространство относительно большое. Его вместимость у новорожденного составляет около 20 см3, а затем быстро увеличивается: к концу первого года жизни — 30 см3, к 8 годам — 140 см3, у взрослого человека — 200 см3.
Мягкая (внутренняя) мозговая оболочка непосредственно обтекает спинной мозг. Между двумя своими листками она содержит сосуды, вместе с которыми входит в борозды и мозговое вещество спинного мозга. Паутинная и мягкая оболочки у новорожденных тонкие, нежные.
Продолговатый мозг является непосредственным продолжением спинного мозга и в основном сохраняет его форму и строение. Про-долговатый мозг имеет вид луковицы. Верхний расширенный конец его граничит с мостом, а нижней границей служит уровень большого отверстия затылочной кости. На передней поверхности продолгова-того мозга расположена передняя срединная щель. По бокам от нее находятся пирамиды, состоящие из двигательных пирамидных путей, соединяющих головной мозг со спинным. Составляющие пирамиды пучки нервных волокон частично перекрещиваются в глубине сре-динной щели на границе со спинным мозгом, после чего опускаются в боковом канатике на противоположной стороне спинного мозга. На вентральной стороне, вокруг срединной щели, проходят пучки воло-кон прямого пирамидного пути, которые не перекрещиваются и спус-каются в переднем канатике спинного мозга. Латерально от пирамид лежит овальное возвышение — олива. На задней поверхности про-долговатого мозга расположена задняя срединная борозда. По ее сто-ронам находятся ядра тонкого и клиновидного пучков, располагаю-щиеся в одноименных бугорках. На задней поверхности находится нижняя часть ромбовидной ямки, где лежат ядра черепно-мозговых нервов (IX—XII пары). С боков ромбовидную ямку ограничивают ножки мозжечка.
Продолговатый мозг возник в связи с развитием органов гравита-ции и слуха. Поэтому в нем заложены ядра серого вещества, имеющие отношение к равновесию, координации движений, регуляции обмена веществ, дыхания и кровообращения. Серое вещество продолговатого мозга представлено дыхательным центром, сосудодвигательным цен-тром, ядрами четырех пар (IX—XII) черепных нервов, ядром оливы и ретикулярной формацией. Ядро оливы имеет вид изогнутой пла-стинки серого вещества, связано с зубчатым ядром мозжечка и явля-ется промежуточным ядром равновесия. Ретикулярная формация представляет собой совокупность клеток и нервных волокон, распо-ложенных в стволе мозга и образующих сеть. Ретикулярная формация связана со всеми органами чувств, двигательными и чувствительными областями коры большого мозга, таламусом и гипоталамусом, спин-ным мозгом. Она регулирует уровень возбудимости и тонуса различных отделов ЦНС, включая кору большого мозга, участвует в регуляции уровня сознания, эмоций, сна и бодрствования, вегетативных функ-ций, целенаправленных движений.
Белое вещество продолговатого мозга содержит длинные и корот-кие пути. К длинным относятся проходящие в передних канатиках спинного мозга нисходящие пирамидные пути, которые частично пе-рекрещиваются в области пирамид. Кроме того, в задних канатиках проходят восходящие чувствительные пути. К коротким путям отно-сятся пучки нервных волокон, соединяющие отдельные ядра серого вещества продолговатого мозга с соседними отделами головного моз-га, а также между собой. Необходимость реализации жизненно важ-ных функций, ядра которых располагаются в продолговатом мозге, с момента рождения ребенка определяют степень зрелости его струк-тур уже в период новорожденности. К 7 годам созревание ядер про-долговатого мозга в основном заканчивается.
Продолговатый мозг выполняет многообразные функции, многие из которых являются жизненно важными. Рефлекторные соматиче-ские реакции направлены на под держание позы. Эти рефлексы связа-ны с рецепторами вестибулярного аппарата и полукружных каналов. Различают две группы рефлексов позы: статические и статокинетиче-ские. Статические рефлексы разделяются на рефлексы положения и рефлексы выпрямления. Рефлексы положения обеспечивают измене-ние тонуса мышц при перемене положения тела в пространстве. Реф-лексы выпрямления определяют перераспределение тонуса мышц, приводящее к восстановлению естественной позы в случае ее измене-ния. Наиболее сложный характер имеют статокинетические рефлексы, направленные на сохранение позы и ориентацию в пространстве при изменении скорости движения. Кроме осуществления двигательных рефлексов активация вестибулярного аппарата приводит к возбужде-нию вегетативных центров. Возникающие при этом вестибуловегета-тивные рефлексы приводят к изменениям дыхания, частоты сердечных сокращений, деятельности желудочно-кишечного тракта («морская болезнь»). Для ядер продолговатого мозга характерны двигательные пищевые рефлексы: жевание и проглатывание пищи.
Вегетативные ядра продолговатого мозга относятся к парасимпа-тическому отделу нервной системы и осуществляют рефлекторный контроль дыхания, деятельности сердца, тонуса сосудов, функции пищеварительных желез. Нервные клетки дыхательного центра нахо-дятся в ретикулярной формации в области четвертого желудочка го-ловного мозга. Повреждение этой зоны приводит к остановке дыха-ния. Вторым жизненно важным центром ретикулярной формации продолговатого мозга являются центры, регулирующие деятельность сердца и тонус сосудов. Раздражение одних участков ретикулярной формации вызывает увеличение тонуса сосудов и повышение артери-ального давления, раздражение других — расширение сосудов и паде-ние артериального давления.
Таким образом, продолговатый мозг регулирует деятельность мно-гих органов грудной и брюшной полости. Нормальное функциониро-вание этого отдела центральной нервной системы жизненно необхо-димо. Повреждение других отделов нервной системы может протекать бессимптомно вследствие больших компенсаторных возможностей мозга, но малейшее повреждение продолговатого мозга приводит к тяжелым нарушениям жизнедеятельности и смерти.
Варолиев мост
Мост лежит спереди продолговатого мозга и имеет переднюю (вы-пуклую) и заднюю (плоскую) поверхности, которые образуют верх-нюю часть ромбовидной ямки. Боковые его части сужены и являются ножками моста, соединяющими мост с мозжечком. Мост состоит из серого и белого вещества. Серое вещество находится внутри и пред-ставлено ядрами черепных нервов с V по VIII пары. Белое вещество располагается снаружи и состоит из продольных и поперечных воло-кон. Вся эта система проводящих путей связывает через мост кору больших полушарий с корой полушарий мозжечка. У новорожденно-го лучше развиты филогенетически более старые отделы мозга. Масса ствола мозга равна 10 г, что составляет 2,7 % массы тела (у взрослого 2%).
Мозжечок
Мозжечок находится позади продолговатого мозга и помещается под затылочными долями полушарий большого мозга, в черепной ямке. В нем различают боковые части, или полушария, и червь, распо-ложенный между полушариями. В отличие от спинного мозга и ствола серое вещество (кора) находится на поверхности мозжечка, а белое — внутри, под корой.
Серое вещество состоит из клеток, расположенных в три слоя: на-ружный (звездчатые и корзинчатые клетки), средний (крупные ганг-лиозные клетки) и внутренний, зернистый, слой (зернистые клетки, между которыми встречаются крупные звездчатые). В толще мозжеч-ка имеются также парные ядра серого вещества, заложенные в каж-дом полушарии среди белого вещества. В области червя лежит ядро шатра, в полушариях, кнаружи от ядра шатра, — шаровидные и проб-ковидные ядра. В центре полушарий находится зубчатое ядро, участ-вующее в осуществлении функции равновесия. При поражении тех или иных ядер наблюдаются различные нарушения двигательной функции. Разрушение ядра шатра сопровождается расстройством равновесия тела; повреждения червя, пробковидного и шаровидного ядер — нарушением работы мускулатуры шеи и туловища; разруше-ние полушарий и зубчатого ядра — нарушением работы мускулатуры конечностей.
Белое вещество мозжечка слагается из различного рода нервных волокон. Одни из них связывают извилины и дольки, другие идут от коры к внутренним ядрам мозжечка, а третьи соединяют мозжечок с соседними отделами мозга. Последние волокна образуют нижние, средние и верхние пары ножек. В составе нижних ножек к мозжечку подходят волокна от продолговатого мозга и олив. Они заканчивают-ся в коре червя и полушариях. Волокна средних ножек идут к мосту. Волокна верхних ножек направляются к крыше среднего мозга, про-ходят в обоих направлениях, связывают мозжечок с красным ядром и таламусом, а также со спинным мозгом.
У новорожденного масса мозжечка 20 г, что составляет 5,4 % массы тела. К 5 месяцам жизни она увеличивается в 3 раза, к 9 месяцам — в 4 раза. В это время наиболее интенсивно развиваются полушария мозжечка. Усиленный рост мозжечка на первом году жизни определя-ется формированием в течение этого периода дифференцированных и координированных движений. В дальнейшем темпы его роста сни-жаются. К 15 годам мозжечок достигает размеров взрослого человека.
Мозжечок обеспечивает координацию движений. При поражени-ях его развиваются разнообразные нарушения двигательной активно-сти и мышечного тонуса, а также вегетативные расстройства. Моз-жечковая недостаточность связана с неспособностью поддерживать позу. Например, при смещении пассивно висящей конечности она не возвращается в исходное положение, а раскачивается подобно маят-нику. Для мозжечковых повреждений характерны тремор, нарушение величины, скорости и направления движений, что приводит к утрате плавности и стабильности двигательных реакций. Целенаправленные движения (попытка взять предмет) выполняются порывисто, рывка-ми, промахами мимо цели. Нарушение двигательной координации при поражениях мозжечка объясняется его тесными связями со ство-лом мозга, а также с таламусом и сенсомоторной областью коры боль-ших полушарий. Таким образом, мозжечок получает разнообразную афферентную информацию от различных компонентов двигательно-го аппарата, обрабатывает ее и передает корригирующие влияния к нейронам ствола мозга и спинальным центрам моторного контроля. Кроме того, благодаря многочисленным синаптическим связям с ре-тикулярной формацией мозжечок играет важную роль в регуляции вегетативных функций.
Между продолговатым мозгом, мостом и мозжечком есть общая полость, получившая название «четвертый желудочек головного моз-га», который напоминает палатку и имеет дно и крышу. Дно желудоч-ка ромбовидной формы, как бы вдавлено в заднюю поверхность про-долговатого мозга и моста, поэтому его еще называют ромбовидной ямкой. В заднюю часть ромбовидной ямки открывается центральный канал спинного мозга, а в передневерхнюю — третий желудочек го-ловного мозга. Посредством трех отверстий четвертый желудочек со-общается с подпаутинным пространством головного мозга, благодаря чему спинномозговая жидкость поступает из мозговых желудочков в межоболочечные пространства.
Средний мозг состоит из ножек мозга и крыши мозга. Они разде-лены сильвиевым водопроводом мозга, который соединяет третий и четвертый желудочки головного моза. Ножки мозга состоят из осно-вания и покрышки, между которыми располагаются пигментирован-ные клетки черной субстанции. Черная субстанция участвует в слож-ной координации движений. Основание ножек образует пирамидный путь. В покрышке ножек лежат ядра блокового и глазодвигательного нервов (III и IV пара черепных нервов). Также в ней располагается красное ядро, в котором заканчиваются верхние ножки мозжечка. В них идет восходящий путь к зрительному бугру и нисходящий — красноядерно-спинномозговой. Красное ядро отвечает за поддержа-ние тонуса мускулатуры туловища и конечностей.
Четверохолмие, или крыша мозга, составляет заднюю часть сред-него мозга. Перпендикулярными друг другу бороздами оно делится на верхние и нижние холмики. Верхнее двухолмие заключает в себе цен-тры ориентировочных рефлексов на зрительные раздражения. По-средством отходящих вперед ручек холмики соединяются с латераль-ными коленчатыми телами промежуточного мозга. По этим ручкам идут волокна зрительного нерва. Нижнее двухолмие служит центром ориентировочных рефлексов на слуховые раздражения. От холмиков к медиальным коленчатым телам идут нижние ручки, по которым проходят волокна слухового нерва. Ядра четверохолмия играют важ-нейшую роль в раннем онтогенезе, обеспечивая первичные формы сенсорного внимания.
В среднем мозге замыкается ряд рефлексов. Нейроны бугров чет-верохолмия отвечают за ориентировочные зрительные и слуховые рефлексы. Ядра четверохолмия участвуют в осуществлении стороже-вого рефлекса, что выражается в усилении тонуса сгибателей. Черная субстанция обеспечивает сложную координацию движений. В ней находятся содержащие дофамин нейроны, регулирующие эмоцио-нальное поведение. Повреждение черной субстанции приводит к на-рушению тонких движений пальцев рук, развитию тремора (болезнь Паркинсона). Красное ядро отвечает за тонус мышц-сгибателей.
9 вопрос
Зрительная, сенсорная система, строение, развитие. Возрастные изменения оптической системы глаза, аккомодации, остроты зрения, пространственного зрения, световой чувствительности и цветового зрения.
Периферическим отделом зрительного анализатора является глаз-ное яблоко. Удетей оно имеет шаровидную форму, у взрослых немно-го вытянутую в длину. Глазное яблоко у новорожденного большое: диаметр — 17,5 мм, масса — 2,3 г. Зрительная ось проходит латераль-нее, чем у взрослого. Растет глазное яблоко быстрее всего на первом году жизни, к 5 годам масса его увеличивается на 70 %, к 20 годам — в 3 раза. Глазное яблоко имеет ядро и три оболочки: наружную — фиб-розную, среднюю — сосудистую и внутреннюю — сетчатку.
Ядро состоит из стекловидного тела, хрусталика и водянистой влаги. Эти образования также являются преломляющими средами глаза.
Хрусталик представляет собой плотное тело в виде двояковыпук-лой линзы. Край хрусталика называется экватором. Хрусталик не име-ет сосудов и нервов, прозрачный и покрыт сверху капсулой. Спереди он соприкасается с радужкой, а сзади вдается в стекловидное тело. Укрепляется хрусталик ресничным пояском, при сокращении или расслаблении ресничного тела натяжение пояска изменяется и хру-сталик изменяет свою форму. Это способствует приспособлению гла-за к ясному видению и называется аккомодацией.
Стекловидное тело заполняет пространство между сетчаткой и хру-сталиком. Оно плотно прилегает к сетчатке и фиксирует хрусталик, состоит из прозрачного студенистого межклеточного вещества и не имеет сосудов.
Водянистая влага выделяется из кровеносных сосудов ресничных отростков и радужки. Она заполняет переднюю камеру глаза, распо-ложенную между роговицей и радужкой, и заднюю камеру глаза, на-ходящуюся между радужкой и хрусталиком. Камеры сообщаются че-рез зрачок. Отток влаги осуществляется через венозный синус.
Фиброзная оболочка сзади (4/5) представлена белочной оболочкой (склерой), а спереди бессосудистой, прозрачной, сильно изогнутой роговицей.
Роговица состоит из плотной соединительной ткани. Спереди по-крыта многослойным плоским неороговевающим эпителием, а сзади — однослойным эндотелием. Кровеносные сосуды в роговице отсутст-вуют. Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется.
Белочная оболочка, или склера, также образована плотной соеди-нительной тканью. Но в отличие от роговицы она непрозрачна, так как в ней содержится много эластичных и коллагеновых волокон. Границей между склерой и роговицей служит ободок—лимброговицы. Кроме того, на границе проходит венозный синус, по которому из глаза оттекает венозная кровь и лимфа. Эпителий роговицы здесь перехо-дит в конъюнктиву. В задней части склеры в месте выхода зрительного нерва образуется решетчатая пластинка с многочисленными отвер-стиями. Здесь склера наиболее массивна и переходит в соединитель-нотканную оболочку зрительного нерва. Кровеносные сосуды проходят через склеру к сосудистой оболочке. К белочной оболочке прикреп-ляются четыре прямые мышцы глаза.
Сосудистая оболочка состоит из собственно сосудистой оболочки, ресничного тела и радужки.
Собственно сосудистая оболочка тонкая, богата сосудами, содер-жит темно-коричневый пигмент. С белочной соединяется рыхло, ме-жду ними располагаются лимфатические щели. Толщина собственно сосудистой оболочки составляет 0,2 мм, состоит она из надсосуди-стой пластинки, сосудистой пластинки и хориокапиллярной пластин-ки. Надсосудистая пластинка образована эндотелием, эластичными волокнами, пигментными клетками и нервными волокнами. Сосуди-стая пластинка содержит крупные вены, между которыми лежат со-единительнотканные волокна и пигментные клетки. В хориокапил-лярной пластинке залегают крупные капилляры синусоидного типа. Их больше всего в оболочке желтого пятна сетчатки. Благодаря осо-бенностям строения капилляров кровь быстро переходит из артери-ального русла в венозное. Без резкой границы собственно сосудистая оболочка переходит в ресничное тело.
Ресничное тело имеет вид валика и вдается внутрь глазного яблока в месте перехода белочной оболочки в роговицу. От переднего края отходят около 70 ресничных отростков. Они переходят в упругие тон-кие волоконца, прикрепляющиеся к капсуле хрусталика по экватору. У новорожденного хрусталик почти круглый. Особенно быстро он растет в течение первого года жизни. Волоконца, поддерживающие хрусталик, образуют ресничный поясок, или циннову связку. Внутри пояска находится водянистая влага. В ресничном теле располагаются гладкие мышечные волокна ресничной мышцы, обеспечивающей ак-комодацию. Ресничное тело у новорожденного развито слабо, хотя в дальнейшем его рост и развитие идут быстро. Способность к акко-модации устанавливается к 10 годам.
Радужка имеет вид диска с отверстием посередине, стоящего по-зади прозрачной роговицы. Своим наружным краем она переходит в ресничное тело, а внутренним ограничивает зрачок. От количества и глубины залегания пигмента зависит ее окраска, которая бывает от светло-голубой до черной. Если пигмент полностью отсутствует (у альбиносов), то радужка имеет красноватый оттенок благодаря просвечивающимся кровеносным сосудам. У новорожденного радуж-ка выпуклая кпереди, пигмента в ней мало. К 2 годам ее толщина уве-личивается и количество пигмента возрастает. Вокруг зрачка распола-гаются радиальные мышцы, расширяющие зрачок, и круговые мыш-цы, суживающие его. Таким образом, зрачок по функции является диафрагмой, регулирующей поступление света в глаз. После рожде-ния диаметр зрачка составляет 2,0 мм, к 2 годам он достигает 2,5—3,5мм, т.е. размера взрослого человека. В возрасте 40—50 лет зрачок немного суживается.
Сетчатка прилежит к стекловидному телу и состоит из трех частей. Задняя часть получила название зрительной, в ней располагаются свето-чувствительные рецепторы глаза (фоторецепторы) — колбочки и палоч-ки. На уровне ресничного тела располагается вторая часть сетчатки — зубчатая кайма. Передняя часть сетчатки подстилает радужку и назы-вается радужиной. Последние две части нечувствительны к свету.
Зрительная часть сетчатки состоит из 10 слоев. Наружный пигментный слой прилегает к сосудистой оболочке. За ним распола-гается слой нейроэпителия с рецепторными клетками. В фоторецепто-рах различают наружный сегмент, содержащий светочувствительный зрительный пигмент (родопсин в палочках и йодопсин в колбочках), и внутренний сегмент, в котором находятся митохондрии. Перифериче-ские отростки палочек и колбочек погружены в черный пигментный слой, выстилающий внутреннюю поверхность глаза. Он уменьшает отражение света внутри глаза и участвует в обмене веществ рецепторов. В сетчатке насчитывают около 7 млн колбочек и примерно 130 млн палочек. Более чувствительны к свету палочки, их называют аппара-том сумеречного зрения. Колбочки, чувствительность которых к свету в 500 раз меньше, чем палочек, являются аппаратом дневного и цвето-вого видения. Колбочки и палочки распределены в сетчатке неравно-мерно. На дне глаза, напротив зрачка, находится так называемое желтое пятно, в центре которого есть углубление — центральная ямка — место наилучшего видения. Сюда фокусируется изображение при рассмат-ривании предмета. В центральной ямке имеются только колбочки. По направлению к периферии сетчатки количество колбочек уменьша-ется, а число палочек возрастает. Периферия сетчатки содержит толь-ко палочки. Недалеко от пятна сетчатки, ближе к носу, расположено слепое пятно. Это место выхода зрительного нерва. В этом участке нет фоторецепторов, и слепое пятно не участвует в создании зрительного образа.
Фоторецепторы контактируют с биполярными нейронами, а те, в свою очередь, — с ганглиозными клетками. Третий слой представляет собой наружную пограничную мембрану, образованную отростками клеток глии. Четвертый слой, наружный ядерный, образован внут-ренними сегментами рецепторов. Далее следует наружный сетчатый слой, состоящий из аксонов рецепторов и отростков биполярных и горизонтальных клеток. Шестой слой называется внутренним ядер-ным и содержит биполярные, горизонтальные и глиальные клетки. За ним лежит внутренний сетчатый слой из отростков биполярных и ганглиозных клеток. В восьмом (ганглиозном) слое находятся сами тела ганглиозных клеток. В девятом слое располагаются нервные во-локна, являющиеся аксонами ганглиозных клеток и образующие зри-тельный нерв. Последним слоем является внутренняя пограничная мембрана, состоящая из отростков глиальных клеток. Отростки ганг-лиозных нейронов образуют зрительный нерв, являющийся провод-никовым отделом зрительного анализатора.
Зрительный нерв у новорожденного тонкий (0,8 мм) и короткий. К 20 годам диаметр его увеличивается вдвое. По выходе из глаза зри-тельный нерв делится на две половины. Внутренняя перекрещивается и вместе с наружной половиной зрительного нерва противоположной стороны направляется к латеральному коленчатому телу, где располо-жен следующий нейрон, заканчивающийся на клетках зрительной зоны коры в затылочной доле полушария. Часть волокон зрительного тракта направляется к клеткам ядер верхнего двухолмия пластинки крыши среднего мозга. Эти ядра, так же как и ядра латеральных коленчатых тел, представляют собой первичные зрительные центры. От ядер верхнего двухолмия начинается тектоспинальный путь, за счет которого осуществляются рефлекторные ориентировочные рефлек-сы, связанные со зрением. Ядра верхнего двухолмия также имеют свя-зи с парасимпатическим ядром глазодвигательного нерва, располо-женным под дном водопровода мозга. От него начинаются волокна, входящие в состав глазодвигательного нерва, которые иннервируют сфинктер зрачка, обеспечивающий сужение зрачка при ярком свете (зрачковый рефлекс), и ресничную мышцу, осуществляющую акко-модацию глаза. Центральным отделом зрительного анализатора явля-ется затылочная доля коры полушарий переднего мозга.
Зрительный анализатор поставляет наибольшее количество инфор-мации в организм человека. Видимым светом называются волны длиной от 300 до 800 нм. Человек воспринимает волны длиной 400-750 нм. Анализ зрительной информации начинается с фотохимических реак-ций в сетчатке и заканчивается в коре.
В палочках содержится пигмент родопсин (зрительный пурпур). Он представляет собой высокомолекулярное соединение, состоящее из ретиналя (альдегида витамина А) и белка опсина. При действии кванта света происходит фотохимическое превращение родопсина: ретиналь отщепляется от опсина и переходит в витамин А. При затем-нении происходит обратный процесс. Родопсин по-разному чувстви-телен к лучам с различной длиной волны (больше всего к сине-зеленой части спектра). В колбочках находится пигмент йодопсин, структура которого близка к строению родопсина. Йодопсин поглощает в боль-шей степени желтый свет.
Для возникновения зрительного ощущения источник света дол-жен обладать энергией. Минимальное число квантов света, которое необходимо для возбуждения рецепторов глаза, колеблется от 8 до 47. Одна палочка может быть возбуждена 1 квантом света. Одиночные палочки и колбочки по световой чувствительности практически не различаются. Но число колбочек в центре в 100 раз меньше количест-ва палочек в периферическом поле. Соответственно и чувствитель-ность палочковой системы на два порядка выше колбочковой.
При переходе от темноты к свету наступает временное ослепление, но постепенно чувствительность глаза снижается (световая адаптация). При переходе от света к темноте происходит обратное явление: человек ничего не видит из-за пониженной возбудимости фоторецепторов. Постепенно их чувствительность повышается, и человек начинает видеть (темновая адаптация). Чувствительность к видению в темноте повышается неравномерно: в первые 10 минут — в 50—80 раз, а в тече-ние часа — во много десятков тысяч раз. В это время происходит вос-становление зрительных пигментов. Йодопсин колбочек в темноте восстанавливается быстрее родопсина, поэтому первая фаза адапта-ции связана с колбочками. Но этот период не вызывает больших из-менений чувствительности, так как чувствительность колбочкового аппарата невелика. Следующий период связан с процессом восста-новления родопсина, который происходит медленно и заканчивается к концу первого часа. Он сопровождается резким повышением чувст-вительности палочек к свету. Так как в темноте максимально чувстви-тельны палочки, то слабоосвещенные предметы видны лишь в том случае, если они находятся не в центре поля зрения, а когда их изобра-жения падают на периферию сетчатки. Кроме того, в темноте осуще-ствляется пространственная суммация вследствие того, что к одной биполярной клетке подключается большое число фоторецепторов.
Для глаза характерна контрастная чувствительность, проявляю-щаяся во взаимном торможении нейронов. Например, серая полоска на светлом фоне кажется темнее такой же полоски бумаги, лежащей на темном фоне. Светлый тон возбуждает большую часть нейронов сетчатки, а они оказывают торможение на клетки, активируемые сиг-налами от рецепторов, на которые проецируется бумажная полоска. Поэтому бумажка на светлом фоне вызывает более слабое возбужде-ние и кажется темной. Наиболее сильное торможение обнаруживает-ся между близко расположенными нейронами. Это так называемый локальный контраст, проявляющийся при восприятии двух поверх-ностей с разной освещенностью.
Слепящая яркость — неприятное ощущение ослепления. Чем боль-ше адаптирован глаз к темноте, тем ниже граница, которая ослепляет. Например, водителя машины ослепляют фары, при чтении нельзя ис-пользовать открытый источник света — свет должен быть рассеянным.
Латентный период возникновения зрительного образа составляет 0,1 с. Но и исчезает ощущение не сразу после прекращения действия раздражителя: оно держится еще некоторое время (если в темноте водить угольком или свечкой, то наблюдается не точка, а сплошная линия). При вращении круга с черными и белыми секторами он кажется серым. Минимальная частота следования стимулов, при кото-рой происходит слияние отдельных ощущений, называется критиче-ской частотой слияния (основа для кинематографии).