Поляриметрический метод исследований применяется для идентификации веществ, проверки их чистоты и количественного анализа.
В фармакопейных целях метод используется для определения количественного содержания и подлинности веществ в лекарственных средствах, а также применяется как испытание на чистоту, подтверждение отсутствия оптически неактивных посторонних веществ. Метод поляриметрии регламентирован в ОФС 42-0041-07 «Поляриметрия» (Государственная Фармакопея РФ XII издание, часть 1).
Важность определения оптической активности для лекарственных средств связано с особенностью оптических изомеров оказывать на организм человека различное физиологическое действие: биологическая активность левовращающих часто сильнее правовращающих изомеров. Например, некоторые лекарственные средства, которые получают синтетически, существуют в виде оптических изомеров, но при этом биологической активностью обладают только в виде левовращающего изомера. Например, лекарственное средство левометицин биологически активен только в левовращающей форме.
В производстве косметической продукции поляриметрия применяется в контроле качества для анализа и определения в сырье и продукции концентрации веществ, являющихся оптически активными, а также их идентификации и чистоты. Этот метод имеет значение, например, при анализе эфирных масел, т.к. биохимическое и физиологическое действие их оптических изомеров различно, есть различия в запахе, вкусе и фармакологических свойствах. Так, (-)-α-бисаболол в ромашке лекарственной оказывает хорошее противовоспалительное действие. Но выделенный из тополя бальзамического (+)-α-бисаболол и полученный синтетически (±)-бисаболол (рацемат) оказывают аналогичное действие, но в значительно меньшей степени.
|
Что касается запаха, то у одного вещества оптические изомеры отличаются как качеством, так и силой запаха: левовращающие изомеры чаще обладают более сильным ароматом и качество запаха воспринимается как более приемлемое, в то время как правовращающие иногда вообще не имеют аромата. Это имеет важное значение при производстве парфюмерно-косметической продукции. Так, (+)-карвон в эфирном масле тмина и (-)-карвон в эфирном масле мяты обладают совершенно разным запахом.
В состав эфирных масел входят многие компоненты, обладающие свойством оптической активности с разным углом вращением, которые в результате смешения компенсируют друг друга, и тогда эфирное масло имеет результирующее оптическое вращение (оптическое вращение конкретного эфирного масла). Например, угол вращения (по справочным данным) для эфирного масла эвкалипта находится в пределах от 0° до +10°, для эфирного масла лаванды – в пределах от -3° до -12°, для эфирного масла пихты – в пределах от -24° до -46°, для эфирного масла укропа – в пределах от +60° до +90°, для эфирного масла грейпфрута – в пределах от +91° до +92°. При идентификации важно знать, что синтетические эфирные масла не обладают свойством оптической активности, что отличает их от натуральных.
Измерения проводят по ГОСТ 14618.9-78 «Масла эфирные, вещества душистые и полупродукты их синтеза. Метод определения угла вращения и величины удельного вращения плоскости поляризации».
В качестве примера применения поляриметрии в пищевой промышленности можно привести контроль качества меда. Как известно, этот продукт в своем составе содержит моносахариды, редуцирующие олигосахариды, некоторые гидроксикислоты и другие, имеющие различное строение молекул и пространственное расположение групп атомов в них. Эти составляющие компоненты являются оптически активными и их наличие как раз и обуславливает способность изменять плоскость поляризации. Содержащиеся в составе меда различные углеводы (фруктоза, глюкоза, сахароза и другие) вращают плоскость поляризации по-разному, и их различная оптическая активность дает представление о качестве меда. При этом выявляется фальсифицированный мед, например, сахарный мед, имеющий удельное вращение в пределах от +0,00° до -1,49° в отличие от цветочного меда, имеющего удельное вращение в среднем -8,4°. Также можно установить зрелость меда: в меде хорошего качества высокое содержание фруктозы или глюкозы и низкое содержание сахарозы. Измерения проводят по ГОСТ 31773-2012 «Мед. Метод определения оптической активности».
|
Примером применения поляриметрических исследований является также поляризационный микроскоп. Объект освещается поляризованным светом и рассматривается через анализатор. Это позволяет видеть прозрачные области объекта, различающиеся оптической активностью. Поляризационный микроскоп применяется, в частности, для исследования структуры тканей нервных волокон.