Дифференциальные уравнения второго порядка.




· Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0. Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

Подробное описание теории и разобранные решения примеров и задач смотрите в разделе линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

· Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x), стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

· Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

Общее решение ЛОДУ на некотором отрезке [a; b] представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

Однако, далеко не всегда частные решения представляются в таком виде.

Примером ЛОДУ является .

Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

В качестве примера ЛНДУ можно привести .

Теорию и решение примеров смотрите в разделе линейные дифференциальные уравнения второго порядка.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-06-05 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: