Общие принципы устройства.




РЕФЕРАТ

По предмету «Физика»
Тема: «Применение силы Лоренца»

 


Выполнил: Студент группы Т-10915Логунова М.В.

 

 

ПреподавательВоронцов Б.С.

 

Курган 2016

Содержание

 

Введение. 3

1. Использование силы Лоренца. 4

1. 1. Электронно-лучевые приборы.. 4

1. 2 Масс-спектрометрия. 6

1. 3 МГД генератор. 7

1. 4 Циклотрон. 8

Заключение. 11

Список использованной литературы.. 13

 

 


 

Введение

Сила Лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует наточечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью υ заряд q лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического E и магнитного B полей.

В Международной системе единиц (СИ) выражается как:

F Л = q υ B sin α

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено О. Хевисайдом.

Макроскопическим проявлением силы Лоренца является сила Ампера.

Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.


 

Использование силы Лоренца

Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

Основным применением силы Лоренца (точнее, её частного случая — силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках, в масс-спектрометрии и МГД-генераторах.

Также в созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц — циклотронах.

 

1. 1. Электронно-лучевые приборы

Электронно-лучевые приборы (ЭЛП) — класс вакуумных электронных приборов, в которых используется поток электронов, сконцентрированный в форме одиночного луча или пучка лучей, которые управляются как по интенсивности (току), так и по положению в пространстве, и взаимодействуют с неподвижной пространственной мишенью (экраном) прибора. Основная сфера применения ЭЛП — преобразование оптической информации в электрические сигналы и обратное преобразование электрического сигнала в оптический — например, в видимое телевизионное изображение.

В класс электронно-лучевых приборов не включаются рентгеновские трубки, фотоэлементы, фотоумножители, газоразрядные приборы (декатроны) и приёмно-усилительные электронные лампы (лучевые тетроды, электровакуумные индикаторы, лампы со вторичной эмиссией и тому подобное) с лучевой формой токов.

Электронно-лучевой прибор состоит, как минимум, из трёх основных частей:

· Электронный прожектор (пушка) формирует электронный луч (или пучок лучей, например, три луча в цветном кинескопе) и управляет его интенсивностью (током);

· Отклоняющая система управляет пространственным положением луча (отклонением его от оси прожектора);

· Мишень (экран) приёмного ЭЛП преобразует энергию луча в световой поток видимого изображения; мишень передающего или запоминающего ЭЛП накапливает пространственный потенциальный рельеф, считываемый сканирующим электронным лучом

Рис. 1 Устройство ЭЛТ

Общие принципы устройства.

В баллоне ЭЛТ создан глубокий вакуум. Для создания электронного луча применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Изменением напряжения на управляющем электроде (модуляторе) можно изменять интенсивность электронного луча и, соответственно, яркость изображения. Покинув пушку, электроны ускоряются анодом. Далее луч проходит через отклоняющую систему, которая может менять направление луча. В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие. Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

 

 

1. 2 Масс-спектрометрия

Рис. 2

Действие силы Лоренца используют и в приборах, называемых масс-спектрографами, которые предназначены для разделения заряженных частиц по их удельным зарядам.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) — метод исследования вещества, основанный на определении отношения массы к заряду ионов, образующихся приионизации представляющих интерес компонентов пробы. Один из мощнейших способов качественной идентификации веществ, допускающий также и количественное определение. Можно сказать, что масс-спектрометрия — это «взвешивание» молекул, находящихся в пробе.

Схема простейшего масс-спектрографа показана на рисунке 2.

В камере 1, из которой откачан воздух, находится источник ионов 3. Камера помещена в однородное магнитное поле, в каждой точке которого индукция B⃗ B→перпендикулярна плоскости чертежа и направлена к нам (на рисунке 1 это поле обозначено кружочками). Между электродами А и В приложено ускоряющее напряжение, под действием которого ионы, вылетающие из источника, разгоняются и с некоторой скоростью попадают в магнитное поле перпендикулярно линиям индукции. Двигаясь в магнитном поле по дуге окружности, ионы попадают на фотопластинку 2, что позволяет определить радиус R этой дуги. Зная индукцию магнитного поля В и скорость υ ионов, по формуле

(1)

можно определить удельный заряд ионов. А если заряд иона известен, можно вычислить его массу.

История масс-спектрометрии ведётся с основополагающих опытов Дж. Дж. Томсона в начале XX века. Окончание «-метрия» в названии метода появилось после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Особенно широкое применение масс-спектрометрия находит в анализе органических веществ, поскольку обеспечивает уверенную идентификацию как относительно простых, так и сложных молекул. Единственное общее требование — чтобы молекула поддавалась ионизации. Однако к настоящему времени придумано

столько способов ионизации компонентов пробы, что масс-спектрометрию можно считать практически всеохватным методом.

 

1. 3 МГД генератор

  Рис. 3 Разделение положительно (q>0) и отрицательно (q<0) заряженных частиц под действием магнитного поля B
   

Магнитогидродинамический генератор, МГД-генератор — энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явлении электромагнитной индукции, то есть — на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.

Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

На заряженную частицу действует сила Лоренца.

Рабочим телом МГД-генератора могут служить следующие среды:

· электролиты;

· жидкие металлы;

Рис. 4. Схема плазменного МГД-генератора: 1 — генератор плазмы; 2 — сопло; 3 — МГД-канал; 4 —электроды с последовательно включённой нагрузкой; 5 — магн. система, создающая тормозящее магн. поле;Rн — нагрузка.

· плазма (ионизированный газ).

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты). В настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы. Под действием магнитного поля носители зарядов отклоняются от траектории, по которой газ двигался бы в отсутствие поля. При этом в сильном магнитном поле может возникать поле Холла (см. Эффект Холла) — электрическое поле, образуемое в результате соударений и смещений заряженных частиц в плоскости, перпендикулярной магнитному полю.

 

1. 4 Циклотрон

Циклотрон — резонансный циклический ускоритель нерелятивистских тяжёлых заряженных частиц (протонов, ионов), в котором частицы двигаются в постоянном и однородном магнитном поле, а для их ускорения используется высокочастотное электрическое поле неизменной частоты.

Схема устройства циклотрона показана на рис.3. Тяжелые заряженные частицы (протоны, ионы) попадают в камеру из инжектора вблизи центра камеры и ускоряются переменным полем фиксированной частоты, приложенным к ускоряющим электродам (их два и они называются дуантами). Частицы с зарядом Ze и массой m движутся в постоянном магнитном поле напряженностью B, направленном перпендикулярно плоскости движения частиц, по раскручивающейся спирали. Радиус R траектории частицы, имеющей скорость v, определяется формулой

(1)

Рис.5. Схема циклотрона: вид сверху и сбоку: 1 -источник тяжелых заряженных частиц (протонов, ионов), 2 - орбита ускоряемой частицы, 3 -ускоряющие электроды (дуанты), 4 - генератор ускоряющего поля, 5 - электромагнит. Стрелки показывают силовые линии магнитного поля). Они перпендикулярны плоскости верхнего рисунка

где γ = [1 - (v/c)2]-1/2 – релятивистский фактор.

В циклотроне для нерелятивистской (γ ≈ 1) частицы в постоянном и однородном магнитном поле радиус орбиты пропорционален скорости (1), а частотаобращения нерелятивистской частицы (циклотронная частота не зависит от энергии частицы

(2)

E = mv2/2 = (Ze)2B2R2/(2m) (3)

В зазоре между дуантами частицы ускоряются импульсным электрическим полем (внутри полых металлических дуантов электрического поля нет). В результате энергия и радиус орбиты возрастают. Повторяя ускорение электрическим полем на каждом обороте, энергию и радиус орбиты доводят до максимально допустимых значений. При этом частицы приобретают скорость v = ZeBR/m и соответствующую ей энергию:

 

На последнем витке спирали включается отклоняющее электрическое поле, выводящее пучок наружу. Постоянство магнитного поля и частоты ускоряющего поля делают возможным непрерывный режим ускорения. Пока одни частицы двигаются по внешним виткам спирали, другие находятся в середине пути, а третьи только начинают движение.

Недостатком циклотрона является ограничение существенно нерелятивистскими энергиями частиц, так как даже не очень большие релятивистские поправки (отклонения γ от единицы) нарушают синхронность ускорения на разных витках и частицы с существенно возросшими энергиями уже не успевают оказаться в зазоре между дуантами в нужной для ускорения фазе электрического поля. В обычных циклотронах протоны можно ускорять до 20-25 МэВ.

Для ускорения тяжёлых частиц в режиме раскручивающейся спирали до энергий в десятки раз больших (вплоть до 1000 МэВ) используют модификацию циклотрона, называемую изохронным (релятивистским) циклотроном, а также фазотрон. В изохронных циклотронах релятивистские эффекты компенсируются радиальным возрастанием магнитного поля.


 

Заключение

Скрытый текст

Письменное заключение (самое основное по всем подпунктам первого раздела – принципы действия, определения)

 

Список использованной литературы

1. Википедия [Электронный ресурс]: Сила Лоренца. URL: https://ru.wikipedia.org/wiki/Сила_Лоренца

2. Википедия [Электронный ресурс]: Магнитогидродинамический генератор. URL: https://ru.wikipedia.org/wiki/ Магнитогидродинамический_генератор

3. Википедия [Электронный ресурс]: Электронно-лучевые приборы. URL: https://ru.wikipedia.org/wiki/ Электронно-лучевые_приборы

4. Википедия [Электронный ресурс]: Масс-спектрометрия. URL: https://ru.wikipedia.org/wiki/Масс-спектрометрия

5. Ядерная физика в Интернете [Электронный ресурс]: Циклотрон. URL: https://nuclphys.sinp.msu.ru/experiment/accelerators/ciclotron.htm

6. Электронный учебник физики [Электронный ресурс]: Т. Применения силы Лоренца// URL: https://www.physbook.ru/index.php/ Т._Применения_силы_Лоренца

7. Академик [Электронный ресурс]: Магнитогидродинамический генератор// URL: https://dic.academic.ru/dic.nsf/enc_physics/МАГНИТОГИДРОДИНАМИЧЕСКИЙ

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: