Фононное стекло, электронный кристалл




Над материалами, которые максимально могли бы охлаждать активный элемент, ученые работают столько, сколько существует полупроводниковая электроника – основа всех умных приборов. При этом от них пытаются добиться противоречащих друг другу требований – хорошей электропроводности и аномально низкой теплопроводности, чтобы тепло, похищенное у активного элемента электрическим током, отводилось в сторону и не возвращалось обратно.

О появлении по-настоящему мощных охлаждающих термоэлектрических материалов в науке заговорили после того, как в начале 90-х годов прошлого века появилась гипотеза американского ученого Слэка. Он не просто заявил о вероятности создания веществ с парадоксальными свойствами, но даже прописал механизм, по которому они могли бы работать.

Термоэлектрики такого уровня могли бы быть созданы на основе сложных химических соединений – супрамолекулярных ансамблей из атомов двух типов – «хозяев» и «гостей». Молекулы хозяина представляют собой решетку, построенную из прочных ковалентных связей. В ее пустотах располагаются подвижные атомы или молекулы гостя, способные колебаться внутри предназначенного для них объема. Их быстрое движение рассеивает фононы, которые служат проводниками тепла, тем самым, снижая теплопроводность. При этом поведение гостя никак не сказывается на электропроводности хозяина – ее обеспечивают электроны, перемещающиеся по ковалентным связям каркаса. Благодаря тому, что объединенные в один молекулярный ансамбль элементы действуют обособленно, появляется возможность оптимизировать свойства каждого из них. Тип таких веществ Слэк назвал фононным стеклом – электронным кристаллом. Однако, закинув удочку, он не дал главного ответа – какие вещества могли бы отвечать таким требованиям – и оставил химиков ломать голову над осуществлением этой замысловатой гипотезы.

Термоэлектрические клатраты. Настоящее и будущее

Как ни странно, ответ на загадку, брошенную американским физиком, был практически готов. Свойствам загадочного фононного стекла отвечали так называемые клатраты – соединения, существующие в природе, над изучением которых химики работали не один десяток лет. Правда, занимались они ими скорее из любопытства. Пытались понять, можно ли повторить их структуру, совмещая различные элементы. Самая первая попытка показала, что такие вещества получить вполне реально: первым подопытным стал щелочной металл натрий, заключенный в решетку из атомов кремния, за ним последовал йод, помещенный в клетку, которая состоит из олова и фосфора. Когда серия экспериментов удалась, ученые задумались над тем, какую выгоду можно извлечь из соединений нового типа.

Концепция нового класса материалов «фононное стекло, электронный кристалл» – вещества, которые могут проводить электричество так же хорошо, как кристаллический проводник, а тепло – так же плохо, как стекло (Слэк, 1995). Типичные свойства существующих полупроводниковых термоэлектрических клатратов:

малая ширина запрещенной зоны – 0,05...0,2 эВ;

высокая электропроводность – до 700 (мОм·см)–1 при комнатной температуре;

увеличение электропроводности с ростом температуры;

высокая подвижность и концентрация носителей – до 2000 см2/В·с и 1018 1/см3 при комнатной температуре;

высокие значения коэффициента Зеебека до 300 мкВ/К при комнатной температуре.

«О существовании клатратов мы знали, по поводу их свойств написано немало книг, – рассказывает профессор МГУ, доктор химических наук Андрей Шевельков. – Они повторяют по своему строению некоторые формы существования воды, льда, когда в нем находятся жесткозаключенные примеси. Скажем, те соединения, которые мы изучаем, часто похожи на залежи метана во льду на дне Мирового океана. В замороженном виде вода создает кристаллическую решетку, в которой и заключены молекулы метана».

Если в гидратах основу трехмерной кристаллической решетки составляют молекулы воды, то в полупроводниковых клатратах в ход идут атомы кремния, олова, германия, причем частично они могут быть заменены на непереходные элементы, например, алюминий или теллур.

«На самом деле, перспективными термоэлектриками являются полупроводниковые клатраты, а вовсе не привычные газовые гидраты. Особенностью полупроводниковых клатратов является то, что каркас всегда несет на себе электрический заряд. В большинстве соединений этот заряд отрицателен, то есть каркас служит полимерным анионом».

Естественно, для компенсации заряда необходимо присутствие катионов. Поэтому в качестве атомов-гостей в кристаллическую решетку «приглашают» щелочные металлы, за исключением лития, а также стронций, барий и европий. В том случае, если каркас заряжен положительно, то гостями-анионами служат галогены за исключением фтора, или теллур. В результате атомы гостя в клатратах размещены в пустотах каркаса хозяина таким образом, что имеют очень много соседей на больших расстояниях. Следовательно, их позиции в центре клатратного полиэдра не слишком хорошо фиксированы, и эти атомы получают возможность двигаться внутри ограниченного объема. Колебательное движение происходит с определенной частотой, которая совпадает с частотой распространения фононов – носителей тепла. При этом происходит резонансное рассеяние фононов, и тепло перестает распространяться по кристаллическому твердому телу, как если бы это было стекло.

Чтобы синтезировать столь сложное по структуре и свойствам вещество, одних химических реакций недостаточно – требуется учитывать много факторов, воспроизводить уникальную среду для взаимодействия элементов. Наши специалисты держат свои методы в секрете.

«В мире насчитывается порядка семи научных групп, которые занимаются этим классом веществ, три из них работают в США. У каждой группы свои методы работы, каждая работает с определенными веществами. Однако нам есть, чем гордиться – на сегодняшний день мы достигли лучших показателей по уменьшению теплопроводности полупроводников, а это важный шаг на пути к созданию эффективного материала».

Мерой эффективности термоэлектрических материалов является безразмерный показатель добротности, который в частности зависит от соотношения электропроводности и теплопроводности. Из большого набора соединений, доступных на сегодняшний день отечественным специалистам, по крайней мере, три имеют значения теплопроводности, в три с половиной раза меньшие (лучшие), нежели любой из коммерчески используемых материалов. Если же эти вещества, которые внешне представляет собой мало чем интересный серый порошок, удастся довести до ума и превратить в материал, то вполне можно ожидать революции на рынке полупроводников.

Сегодня полупроводники – востребованный и многоликий «товар». По данным Ассоциации полупроводниковой промышленности, мировые продажи полупроводников только за два первых месяца этого года превысили 40 миллиардов долларов. Что, впрочем, неудивительно. Термоэлектрические материалы применяют для охлаждения процессоров в современных ноутбуках и компьютерах, а потому даже небольшой прогресс в этой области сулит серьезную выгоду.

Что говорить о супрамолекулярных клатратах, которые при их превращении в полноценный материал могут произвести революцию. Для начала может появиться новая область техники – супрамолекулярная электроника. То есть полупроводники нового поколения смогут охлаждать активный элемент настолько, чтобы в ход шли сверхпроводники – а значит, скорости, с которыми работают современные машины, возрастут в разы.

Супрамолекулярным клатратам найдется применение и в быту. Дело в том, что термоэлектрические материалы уже применяют в портативных холодильниках. Однако они не способны охлаждать крупные камеры, так что по старинке в бытовых и промышленных холодильниках используют хладагенты. Они же, по словам экологов, наносят существенный вред окружающей среде, разрушают озоновый слой со всеми вытекающими отсюда глобальными потеплениями. Заменив хладагенты полупроводниковыми охлаждающими элементами, мы получим надежные, экологически безопасные, да к тому же тихие холодильники, поскольку компрессор в этом случае тоже не понадобится.

Список литературы

Лен Ж.-М. Супрамолекулярная химия: Концепции и перспективы. Пер. с англ.– Новосибирск: Наука, 1998.

Стойков И.И. Начала супрамолекулярной химии. – Казань: ООО «Регентъ», 2001.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: