Обмен газов в легких.Транспорт газа кровью




Переход О2из альвеолярного воздуха в кровь и СО2из крови в аль-веолы происходит только путем диффузии. Движущей силой диффузии являются разности ( градиенты ) парциальных давлений ( напряжений ) О 2 и СО 2 по обе стороны альвеолярно-капиллярной мембраны или аэроге-матического барьера. Напряжение газов в различных средах представлено в табл. 6.

Кислород и углекислый газ диффундируют только в растворенном состоянии, что обеспечивается наличием в воздухоносных путях водяных паров, слизи и сурфактантов. В ходе диффузии через аэрогематический барьер молекулы растворенного газа преодолевают большое сопротивле-ние, обусловленное слоем сурфактанта, альвеолярным эпителием, мембра-нами альвеол и капилляров, эндотелием сосудов, а также плазмой крови и мембраной эритроцитов.

Диффузионная способность легких для кислорода очень велика. Это обусловлено огромным числом (сотни миллионов) альвеол и большой их газообменной поверхностью (около 100 м2), а также малой толщиной (около 1 мкм) альвеолярно-капиллярной мембраны. Диффузионная способность легких у человека примерно равна 25 мл О2 в 1 мин в расчете на 1 мм рт. ст. градиента парциальных давлений кислорода. Учитывая, что градиент рО2между притекающей к легким венозной кровью и альвеоляр-ным воздухом составляет около 60 мм рт. ст., этого оказывается достаточно, чтобы за время прохождения крови через легочный капилляр (около 0,8 с) напряжение кислорода в ней успело уравновеситься с альвеолярным рО2.

Диффузия СО2из венозной крови в альвеолы даже при сравнительно небольшом градиенте рСО2(около 6 мм рт. ст.) происходит достаточно легко, т.к. растворимость СО2в жидких средах в 20 – 25 раз больше, чем у кислорода. Поэтому после прохождения крови через легочные капилляры рСО2в ней оказывается равным альвеолярному и составляет около 40 мм рт. ст. Дыха-тельная функция крови прежде всего обеспечивается доставкой к тканям необходимого им количества О2. Кислород в крови находится в двух агре-гатных состояниях: растворенный в плазме (0,3 об. %) и связанный с гемо-глобином (около 20 об. %) – оксигемоглобин.

Отдавший кислород гемоглобин считают восстановленным или де-зоксигемоглобином. Поскольку молекула гемоглобина содержит 4 частицы гема (железосодержащего вещества), она может связать четыре молекулы О2. Количество О2, связанного гемоглобином в 100 мл крови, носит назва-ние кислородной емкости крови и составляет около 20 мл О2. Кислород-ная емкость всей крови человека, содержащей примерно 750 г гемоглоби-на, приблизительно равна 1 л.

Каждому значению рО2в крови соответствует определенное про-центное насыщение гемоглобина кислородом. Кривую зависимости про-центного насыщения гемоглобина кислородом от величины парциального напряжения называют кривой диссоциации оксигемоглобина (рис. 43). Анализ хода этой кривой сверху вниз показывает, что с уменьшением рО2в крови происходит диссоциация оксигемоглобина, т.е. процентное содер-жание оксигемоглобина уменьшается, а восстановленного – растет.

В различных условиях деятельности может возникать острое сниже-ние насыщенности крови кислородом – гипоксемия. Причины гипоксемии весьма разнообразны. Она может развиваться вследствие снижения рО2 в альвеолярном воздухе (произвольная задержка дыхания, вдыхание воздуха с пониженным рО2), при физических нагрузках, а также при неравномер-ной вентиляции различных отделов легких.

Транспорт СО 2. Образующийся в тканях СО2диффундирует в тка-невые капилляры, откуда переносится венозной кровью в легкие, где пере-ходит в альвеолы и удаляется с выдыхаемым воздухом. Углекислый газ в крови (как и О2) находится в двух состояниях: растворенный в плазме (около 5 % всего количества) и химически связанный с другими вещества-ми (95 %). СО2в крови находится в виде угольной кислоты (Н2СО3), солей угольной кислоты (NаНСО3) и в связи с гемоглобином (НbНСО3) – 4,5 об. %.В крови тканевых капилляров одновременно с поступлением СО2внутрь эритроцитов и образованием в них угольной кислоты происходит отдача О2оксигемоглобином. Восстановленный Нb легко связывает водо-родные ионы, образующиеся при диссоциации угольной кислоты. Таким образом, восстановленный Нb венозной крови способствует связыванию СО2, а оксигемоглобин, образующийся в легочных капиллярах, облегчает его отдачу.В состоянии покоя с дыханием из организма человека удаляется 230 – 250 мл СО2в 1 минуту. При удалении из крови СО2из нее уходит примерно эквивалентное число ионов водорода.


Регуляция дыхания

Регуляция внешнего дыхания представляет собой физиологический процесс управления легочной вентиляцией для обеспечения оптимального газового состава внутренней среды организма в постоянно меняющихся условиях его жизнедеятельности.

Основную роль в регуляции дыхания играют рефлекторные ре - акции, возникающие в результате возбуждения специфических рецепто-ров, заложенных в легочной ткани, сосудистых рефлексогенных зонах и скелетных мышцах. Центральный аппарат регуляции дыхания представ-ляют нервные образования спинного, продолговатого мозга и вышележа-щих отделов ЦНС.

Гуморальная регуляция дыхания, созданная Д. Холденом и Д. При-стли около 50 лет тому назад, в последние годы не находит эксперимен-тального подтверждения, большинством специалистов считается ошибоч-ной и упоминается сейчас только в историческом плане. Это обусловлено открытием специфических рецепторов (механо- и хеморецепторов), а так-же других рефлекторных влияний на дыхательный центр. Поэтому все из - менения внешнего дыхания в настоящее время объясняются только рефлекторными механизмами.

Дыхательный ритм и управление деятельностью дыхательных мышц генерируется работой дыхательного центра, представляющего собой сово-купность взаимосвязанных нейронов ретикулярной формации продолговатого мозга и вышележащих отделов ЦНС, обеспечивающих тонкое при-способление дыхания к различным условиям внешней среды. Современ-ные представления о работе дыхательного центра сводятся к тому, что часть дыхательных нейронов, объединенных в так называемую латераль-ную зону, является эфферентной частью дыхательного центра и обеспечи-вает преимущественно фазу вдоха (инспираторные нейроны). Другая группа нейронов, составляющая медиальную зону, является афферентной частью дыхательного центра и обеспечивает фазу выдоха (экспираторные нейроны). Предназначение этой зоны заключается в контроле за перио-дичностью дыхательной ритмики, организуемой латеральной зоной.

В регуляции дыхания на основе механизма обратных связей прини-мают участие несколько групп механорецепторов легких.

1. Рецепторы растяжения легких находятся в гладких мышцах трахеи и бронхов. Адекватным раздражителем этих рецепторов является растяжение стенок воздухоносных путей.

2. Ирритантные рецепторы расположены в эпителиальном слое верхних дыхательных путей и раздражаются при изменении объ-ема легких, а также при пневмотораксе, коллапсе и действии на слизистую трахеи и бронхов механических или химических раз-дражителей. При раздражении этих рецепторов у человека возни-кают кашлевой рефлекс, першение и жжение, учащение дыхания и бронхоспазм.

3. Джи - рецепторы расположены в стенках альвеол в местах их контакта с капиллярами. Эти рецепторы формируют частое по-верхностное дыхание при патологии легких (воспаление, отек, повреждения легочной ткани), а также раздражаются при дейст-вии некоторых биологически активных веществ (никотина, гис-тамина и др.).

4. Проприорецепторы дыхательных мышц (межреберные мыш-цы, мышцы живота) обеспечивают усиление вентиляции легких при повышении сопротивления дыханию.

Поддержание постоянства газового состава внутренней среды орга-низма регулируется с помощью центральных и периферических хеморе-цепторов.

Центральные хеморецепторы расположены в структурах продол-говатого мозга, они чувствительны к изменению рН межклеточной жидко-сти мозга. Эти рецепторы стимулируются ионами водорода, концентрация которых зависит от рСО2в крови. При снижении рН тканевой (интерсти-циальной) жидкости мозга (т.е. при повышении концентрации водородныхионов) дыхание становится более глубоким и частым. Напротив, при уве-личении рН угнетается активность дыхательного центра и снижается вен-тиляция легких.

Периферические ( артериальные ) хеморецепторы расположены в дуге аорты и в месте деления общей сонной артерии. Эти рецепторы вызы-вают рефлекторное увеличение легочной вентиляции в ответ на снижение рО2 в крови (гипоксемия).

Афферентные влияния с работающих мышц осуществляются благо-даря раздражению проприорецепторов, что приводит к усилению дыхания рефлекторным путем. Повышение активности дыхательного центра в этом случае является результатом распространения возбуждения по различным отделам ЦНС.

Существенное значение в регуляции дыхания имеют и условнореф-лекторные влияния. В частности, эмоциональные нагрузки, предстартовые состояния, гипнотические внушения, влияния индифферентных раздражи-телей, сочетавшихся ранее с избытком СО2, самообучение управлению ды-ханием подтверждают сказанное. Легочная вентиляция зависит также от особенностей гемодинамики (уровня АД, величины МОК), температуры внешней среды и других факторов.


 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: