Функция
Автоматические выключатели выполняют одновременно функции защиты и управления. Независимо от выполняемых функции автоматические выключатели подразделяются по собственному времени срабатывания tс, в (времени с момента подачи команды до начала размыкания контактов) на
- нормальные tc, в=0,02-0,1 с,
- селективные (tc, в регулируется до 1с)
- быстродействующие, обладающие токоограничивающим эффектом (tс, в не более 0,005 с).
Устройство
Автоматический выключатель для монтажа на DIN-рейку конструктивно выполнен в диэлектрическом корпусе.
Включение-отключение производится рычажком (1 на рисунке), провода подсоединяются к винтовым клеммам (2). Защелка (9) фиксирует корпус выключателя на DIN-рейке и позволяет при необходимости легко его снять (для этого нужно оттянуть защелку, вставив отвертку в петлю защелки). Коммутацию цепи осуществляют подвижный (3) и неподвижный (4) контакты. Подвижный контакт подпружинен, пружина обеспечивает усилие для быстрого расцепления контактов. Механизм расцепления приводится в действие одним из двух расцепителей: тепловым или магнитным.
- Тепловой расцепитель представляет собой биметаллическую пластину (5), нагреваемую протекающим током. При протекании тока выше допустимого значения биметаллическая пластина изгибается и приводит в действие механизм расцепления. Время срабатывания зависит от тока (времятоковая характеристика) и может изменяться от секунд до часа. Минимальный ток, при котором должен срабатывать[1] тепловой расцепитель, составляет 1,45 от номинального тока предохранителя. Настройка тока срабатывания производится в процессе изготовления регулировочным винтом (6). В отличие от плавкого предохранителя, автоматический предохранитель готов к следующему использованию после остывания пластины.
- Магнитный (мгновенный) расцепитель представляет собой соленоид (7), подвижный сердечник которого также может приводить в действие механизм расцепления. Ток, проходящий через предохранитель, течет по обмотке соленоида и вызывает втягивание сердечника при превышении заданного порога. Мгновенный расцепитель, в отличие от теплового, срабатывает очень быстро (доли секунды), но при значительно большем превышении тока: в 2÷10 раз от номинала, в зависимости от типа (автоматические выключатели делятся на типы A, B, C и D в зависимости от чувствительности мгновенного расцепителя).
Во время расцепления контактов может возникнуть электрическая дуга, поэтому контакты имеют особую форму и находятся в дугогасительной камере (8).
|
Классификация
ГОСТ
ГОСТ 9098-78 — устанавливает следующую классификацию автоматических выключателей
1. По роду тока главной цепи: постоянного тока; переменного тока; постоянного и переменного тока.
Номинальные токи главных цепей выключателей, предназначенных для работы при температуре окружающего воздуха 40 °C, должны соответствовать ГОСТ 6827. Номинальные токи для главных цепей выключателя выбирают из ряда: 6,3; 10; 16; 20; 25; 32; 40; 63; 100; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300 А. Дополнительно могут выпускаться выключатели на номинальные токи главных цепей выключателей: 1500; 3000; 3200 А.
Номинальные токи максимальных расцепителей тока выключателей, предназначенных для работы при температуре окружающего воздуха 40 °C, должны соответствовать ГОСТ 6827. Допускаются номинальные токи максимальных расцепителей тока: 15; 45; 120; 150; 300; 320; 600; 1200; 1500; 3000; 3200 А
|
2. По числу полюсов главной цепи: однополюсные; двухполюсные; трехполюсные; четырехполюсные.
3. По наличию токоограничения: токоограничивающие; нетокоограничивающие.
4. По видам расцепителей: с максимальным расцепителем тока; с независимым расцепителем; с минимальным или нулевым расцепителем напряжения.
5. По характеристике выдержки времени максимальных расцепителей тока: без выдержки времени; с выдержкой времени, независимой от тока; с выдержкой времени, обратно зависимой от тока; с сочетанием указанных характеристик.
6. По наличию свободных контактов(«блок-контактов» для вторичных цепей): с контактами; без контактов.
7. По способу присоединения внешних проводников: с задним присоединением; с передним присоединением; с комбинированным присоединением (верхние зажимы с задним присоединением, а нижние — с передним присоединением или наоборот); с универсальным присоединением (передним и задним).
8. По виду привода: с ручным; с двигательным; с пружинным.
9. По наличию и степени защиты выключателя от воздействия окружающей среды и от соприкосновения с находящимися под напряжением частями выключателя и его движущимися частями, расположенными внутри оболочки в соответствии с требованиями ГОСТ 14255.
Характеристики
Ток мгновенного расцепления
Диаграммы отключения автоматических выключателей разных типов (закрашена область токов мгновенного расцепления)
|
Согласно ГОСТ Р 50345-99, автоматические выключатели делятся на следующие типы по току мгновенного расцепления:
- тип B: свыше 3· In до 5· In включительно (где In — номинальный ток)
- тип C: свыше 5· In до 10· In включительно
- тип D: свыше 10· In до 50· In включительно
У европейских производителей классификация может несколько отличаться. В частности, имеется дополнительный тип A (свыше 2· In до 3· In).
Варианты исполнения
Автоматические выключатели выполняются одно-, двух- и трёхполюсными и имеют следующие конструктивные узлы: главной контактной системы, дугогасительной системы, привода, расцепляющего устройства, расцепителей и вспомогательных контактов.
Контактная система может быть трёхступенчатой (с главными, промежуточными и дугогасительными контактами), двухступенчатой (с главными и дугогасительными контактами) и при использовании металлокерамики одноступенчатой. Дугогасительная система может состоять из камер с узкими щелями или из камер с дугогасительными решётками. Комбинированные дугогасительные устройства — щелевые камеры в сочетании с дугогасительной решеткой применяют для гашения дуги при больших токах.
Для каждого исполнения автоматического выключателя существует предельный ток короткого замыкания, который гарантированно не приводит к выходу из строя автомата. Превышение этого тока может вызвать подгорание или сваривание контактов. Например, у популярных серий бытовых автоматов при токе срабатывания 6-50А предельный ток обычно составляет 1000-10 000А.
Автоматические выключатели изготовляют с ручным и двигательным приводом, в стационарном или выдвижном исполнении. Привод автоматического выключателя служит для включения, автоматического отключения и может быть ручным непосредственного действия и дистанционным (электромагнитным, пневматическим и др.).
Автоматические выключатели имеют реле прямого действия, называемые расцепителями.
Расцепители
Расцепители — это электромагнитные или термобиметаллические элементы, служащие для отключения автоматического выключателя через механизм свободного расцепления при КЗ, перегрузках и исчезновении напряжения в первичной цепи. Механизм свободного расцепления состоит из рычагов, защелок, коромысел и отключающих пружин и предназначен для отключения автоматического выключателя, а также для устранения повторного включения автоматического выключателя на короткое замыкание при длительно существующей команде на включение.
Отключение
Отключение может происходить без выдержки времени или с выдержкой. По собственному времени отключения tс, о (промежуток от момента, когда контролируемый параметр превзошел установленное для него значение, до момента начала расхождения контактов) различают нормальные выключатели (tс, о = 0,02-1 с), выключатели с выдержкой времени (селективные) и быстродействующие выключатели (tс, о < 0,005 с).
Нормальные и селективные автоматические выключатели токоограничивающим действием не обладают. Быстродействующие выключатели, так же как предохранители, обладают токоограничивающим действием, так как отключают цепь до того, как ток в ней достигнет значения Іу.
Селективные автоматические выключатели позволяют осуществить селективную защиту сетей путём установки автоматических выключателей с разными выдержками времени: наименьшей у потребителя и ступенчато возрастающей к источнику питания.
Средства для размыкания цепи
DIN-рейка — пришло из Германии, аббревиатура «din» расшифровывается как Deutsches Institut fur Normung — Институт стандартизации Германии. Дин рейки и прижимы применяются для монтажа и фиксации зажимов наборных.(см. рисунок). Используется для крепления различного модульного оборудования (автоматических выключателей, УЗО и др.) в электрических щитах.
Согласно ГОСТ Р МЭК 60715-2003, для производства DIN-реек должна использоваться холоднокатаная полоса из углеродистой стали с определенными установленными характеристиками, выполняться цинкование и хромирование поверхности изделия.
Электрическая дуга — физическое явление, один из видов электрического разряда в газе. Синонимы: Вольтова дуга, Дуговой разряд.
Впервые была описана в 1802 году русским учёным В. В. Петровым. Электрическая дуга является частным случаем четвёртой формы состояния вещества — плазмы — и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.
Электрическая дуга между двумя электродами в воздухе при атмосферном давлении образуется следующим образом:
При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и пр. Зачастую, для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.
Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения, в воздушном промежутке образуется достаточное количество плазмы для того, чтобы напряжение пробоя (или сопротивление воздушного промежутка) в этом месте значительно упало. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Эта дуга является по сути проводником, и замыкает электрическую цепь между электродами, средний ток увеличивается ещё больше нагревая дугу до 5000K — 50000K. При этом считается, что поджиг дуги завершён.
Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.
После поджига, дуга может быть устойчива при разведении электрических контактов до некоторого расстояния.
При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с электрической дугой осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.
Электрическая дуга используется при электросварке металлов, для выплавки стали (Дуговая сталеплавильная печь) и в освещении (в дуговых лампах).
Электрическая дуга в воздухе