Классификация устройств преобразовательной техники
Удельный вес устройств преобразовательной техники в энергетическом балансе страны занимает значительное место. Преимущества полупроводниковых преобразователей, по сравнению с другими видами преобразователей, неоспоримы. Основные преимущества заключаются в следующем:
- Полупроводниковые преобразователи обладают высокими регулировочными и энергетическими показателями;
- имеют малые габариты и массу;
- просты и надежны в эксплуатации;
- обеспечивают бесконтактную коммутацию токов в силовых цепях.
Благодаря указанным преимуществам полупроводниковые преобразователи получили широкое применение: цветной металлургии, химической промышленности, на железнодорожном и городском транспорте, в черной металлургии, машиностроении, энергетике и других отраслях.
2.Однофазная, двухполупериодная схема со средней точкой.
Однофазная двухполупериодная схема (рис. 155 6) часто применяется для получения малых и средних мощностей выпрямленного тока. Эта схема сложнее однополупериодной схемы, так как требует два вентиля (или один двуханодный кенотрон), а трансформатор должен иметь две равноценные вторичные полуобмотки, образуемые выводом средней точки. [ 1 ]
Однофазная двухполупериодная схема (рис. 85, б) применяется в мощных выпрямителях для выпрямления низких напряжений, когда по обратному напряжению допускается установка одного вентиля в плече. [ 2 ]
Однофазная двухполупериодная схема со средней точкой представлена на рис. 2 - 3 а. [ 3 ]
В однофазной двухполупериодной схеме со средней точкой количество плеч равно двум вместо четырех в мостовой схеме. Количество вентилей в плече схемы со средней точкой должно быть в 2 раза больше, чем в мостовой схеме. [ 4 ]
|
В однофазной двухполупериодной схеме со средней точкой количество плеч равно двум вместо четырех в мостовой. Количество вентилей в плече схемы со средней точкой в 2 раза больше, чем в мостовой. [ 5 ]
Общий вид однофазной двухполупериодной схемы с управляемыми вентилями представлен на рис. 2 - 6 а. Использование в схеме выпрямителя управляемых вентилей позволяет задерживать начало прохождения тока через очередной вступающий в работу вентиль по отношению к моменту го естественного отпирания. [ 6 ]
Форма выходного напряжения трехфазного преобразователя с непосредственной связью при скользящем угле зажигания. |
Каждая фаза преобразователя состоит из двух встречно включенных однофазных двухполупериодных схем выпрямления со средней точкой. [ 7 ]
Последовательное включение вентилей в схеме однофазного. |
Этот метод может быть проиллюстрирован на примере однофазной двухполупериодной схемы с выводом нулевой точки трансформатора, в каждое из плеч которой включено по два вентиля. [ 8 ]
Однофазный выпрямитель с нулевым вентилем.| Однофазный выпрямитель с дополнительными вентилями. |
Принцип действия такой схемы во многом подобен принципу действия однофазной двухполупериодной схемы. [ 9 ]
Ток А по своей форме одинаков с кривой тока для однофазной двухполупериодной схемы со средней точкой. [ 10 ]
В сравнении с однофазной однополупериодной схемой выпрямления индуктивность фильтра в однофазной двухполупериодной схеме при одном и том же коэффициенте пульсации оказывается в 4 7 раза меньше. [ 11 ]
|
В качестве примера на рис. 18 показаны кривые выпрямленного тока в однофазной двухполупериодной схеме с неуправляемыми вентилями для различных значений отношения индуктивного сопротивления x i coLd нагрузки к ее активному сопротивлению Rd. В крайнем (лишь теоретически возможном) случае можно принять величину Ld бесконечно большой, при этом в кривой выпрямленного тока пульсации полностью отсутствуют. [ 12 ]
3.Однофазная мостовая схема выпрямителя.
В однофазной мостовой схеме к одной из диагоналей моста подключается источник переменного напряжения (вторичная обмотка трансформатора), а к другой – нагрузка.
В мостовой схеме диоды работают попарно: в течение одной половины периода сетевого напряжения ток протекает от вторичной обмотки трансформатора по цепи VD1, RН, VD2, а на втором полупериоде – по цепи VD3, RН, VD4, причем в каждом полупериоде через нагрузку ток проходит в одном направлении, что и обеспечивает выпрямление. Коммутация диодов происходит в моменты перехода переменного напряжения через нуль.
Рис.1. Однофазная мостовая схема выпрямления
Временные диаграммы для мостовой схемы, изображённы на рисунке 2.
У мостовой схемы в каждом полупериоде ток проходит одновременно через два диода (например, VD1, VD2), потому временные зависимости токов и напряжений будут принадлежать парам вентилей. Среднее значение напряжения на выходе выпрямителя
где U2 ─ действующее значение переменного напряжения на входе выпрямителя.
Рис. 2. Временные диаграммы работы однофазной мостовой схемы выпрямления: u2 – кривая входного переменного напряжения; iV1, iV2 – кривая тока диодов VD1 и VD2; uV1, uV2 – напряжение на диодах VD1 и VD2; iV3, iV4 – кривая тока диодов VD3 и VD4; uV3, uV4 – напряжение на диодах VD3 и VD4; iн – кривая тока нагрузки; uн – кривая напряжения на нагрузке
|
Действующее значение напряжения на входе выпрямителя
Среднее значение тока через диод в два раза меньше среднего значения тока нагрузки Id:
Максимальное значение тока, протекающего через диод
Действующее значение тока диода
Действующее значение переменного тока на входе выпрямителя
Максимальное обратное напряжение на диоде в непроводящую часть периода
Напряжение на нагрузке состоит из полусинусоид вторичного напряжения трансформатора, следующих одна за другой. После разложения в ряд Фурье напряжение такой формы можно представить в виде
Амплитуда основной гармоники выпрямленного напряжения с частотой 2ω
следовательно, коэффициент пульсации выпрямленного напряжения
Коэффициент трансформации трансформатора
Мощность первичной и вторичной обмоток вентильного трансформатора
Расчетная мощность трансформатора
В качестве недостатков однофазной мостовой схемы можно отметить: большее количество диодов и протекание тока в каждом полупериоде по двум диодам одновременно. Последнее свойство однофазных мостовых выпрямителей снижает их КПД из-за повышенного падения напряжения на полупроводниковых структурах вентилей. Это особенно заметно у низковольтных выпрямителей, работающих с большими токами.
Несмотря на отмеченные недостатки, мостовая схема выпрямления широко применяется на практике в однофазных выпрямителях различной мощности.
4.Трёхфазная мостовая схема выпрямителя.
Трехфазный мостовой выпрямитель (а и временные диаграммы токоа и напряжений при а0 (б. |
Трехфазная мостовая схема выпрямления является наиболее распространенной в области средних и больших мощностей. [ 1 ]
Схема пятиплечного выпрямителя для получения асимметричного тока. |
Трехфазные мостовые схемы выпрямления характеризуются наилучшими показателями по сравнению с другими схемами преобразования переменного напряжения в постоянное. [ 2 ]
Трехфазная мостовая схема выпрямления рис. 2.86 (схема Ларионова) по сравнению с трехфазной имеет следующие, преимущества: обратное напряжение на вентиле в 2 раза меньше; лучшее использование трансформатора; отсутствие подмагничивания сердечника; меньшая величина пульсации; большая частота пульсации. Недостатком мостовой схемы по сравнению стрехфазной являются: большее количество вентилей; повышенное падение напряжения в вентильном комплекте. При средних и больших мощностях схема используется при работе на нагрузку с индуктивной реакцией. При малых мощностях эта схема иногда работает на нагрузку с емкостной реакцией. Схема применяется также и для питания чисто активной нагрузки. [ 3 ]
Трехфазный мосговой выпрямитель (а и временные диаграммы токов и напряжений при а 0 (б. |
Трехфазная мостовая схема выпрямления является наиболее распространенной в области средних и больших мощностей. [ 4 ]
Трехфазная мостовая схема выпрямления (рис. 60, а) состоит из трансформатора Т, плести диодов и нагрузки Rd. Сетевая и вентильная обмотки трансформатора могут быть соединены как в треугольник, так и в звезду, как изображено на рис. 60, а. В рассматриваемой схеме в каждый момент времена работают два диода: один из катодной группы и один из анодной. В катодной группе ток проводит тот диод, на аноде которого положительный потенциал в данный момент времени является наибольшим. В анодной группе ток проводит диод, катод которого обладает наиболее отрицательным потенциалом в данный момент времени. [ 5 ]
Трехфазная мостовая схема выпрямления (рис. 6.2, а) наиболее распространена в выпрямителях с падающей и жесткой характеристиками. Схему применяют для работы в комплекте с наиболее простой конструкцией трехфазных трансформаторов. На рис. 6.2, б показаны синусоиды каждой фазы, а на рис. 6.2, в - выпрямленный ток, который приобретает форму, показанную на рисунке. Пульсация его становится ше-стифазной с частотой 300 Гц. Выпрямленный ток имеет жесткую внешнюю характеристику. При увеличении индуктивного сопротивления характеристика получается падающей. [ 6 ]
Кольцевая схема выпрямления. |
Трехфазная мостовая схема выпрямления применена для однопостовых выпрямителей с падающей характеристикой ВД-201, ВД-306, ВД-401 на токи 200, 315 и 400 А. Они изготовляются с механическим трансформаторным регулированием и благодаря простоте конструкции, надежности и легкости обслуживания широко применяются на стройках. Изменение диапазонов в этих выпрямителях обеспечивается переключением первичных, а также вторичных обмоток трансформаторов с треугольника на звезду. Плавнее регулирование в пределах диапазона осуществляется путем перемещения катушек вторичной обмотки ходовым винтом. [ 7 ]
Трехфазная мостовая схема выпрямления (рис. 11 а) включает две группы вентилей: анодную В1, 83 и В5 и катодную В2, В4 и В6, имеющие соответственно общий анодный вывод А и общий катодный вывод / С. [ 8 ]
Трехфазная мостовая схема выпрямления может быть выполнена на управляемых вентилях в симметричном или несимметричном исполнении. Режимы работы управляемых вентилей определяются формой управляющих воздействий со стороны системы управления. [ 9 ]
В трехфазной мостовой схеме выпрямления (рис. 2.5, в) применяются шесть вентилей, образующих две группы: 3 вен-гиля с общим анодным выводом, а 3 - с общим катодным выводом. Нагрузка присоединяется к этим общим выводам. При активной нагрузке в любой момент времени ток проходит через два вентиля из разных групп. Пульсации выпрямленного напряжения в данной схеме меньше, чем в трехфазной нулевой. [ 10 ]
При трехфазной мостовой схеме выпрямления обратное зажигание ртутного или пробой полупроводникового вентиля не сопровождаются подпиткой током от параллельно работающих выпрямителей, так как путей для такой подпитки нет. [ 11 ]
5.Трёхфазная схема выпрямления со средней точкой.