Минимальные элементы верхней полурешетки m-степеней




 

Утверждение 3.1: Наименьшего элемента в L нет.

Доказательство:

Допустим противное, то есть пусть - наименьший в L элемент. Тогда Ø), где сØ – нигде неопределенная функция.

Следовательно, Ø и Ø).

Возьмем всюду определенную функцию h. Ясно, что сØmh.

С одной стороны, Ø) – наименьший элемент, то есть сØmh; с другой стороны сØmh.

Получили противоречие, то есть в L наименьшего элемента нет. Ч.т.д.

Утверждение 3.2: m-степень, содержащая универсальную функцию, является наибольшей в L.

Доказательство:

Пусть Ψ – универсальная функция, а α – произвольная ЧРФ. Так как α – ЧРФ, то найдется такое число х0, что α=φ0.

Покажем, что . В качестве сводящей возмем функцию f(x0,y). Тогда из определения Ψ вытекает, что , где , то есть .

Таким образом, - наибольшая в L. Ч.т.д.

Введем обозначение: .

Ясно, что .

Утверждение 3.3: сØ и множество всех функций вида cn(x) и только они образуют множество минимальных в L элементов.

Доказательство.

Из утверждения 3.1. следует, что сØ – минимальный в L элемент.

Возьмем произвольную функцию cn(x).

Пусть .

Ясно, что { }, кроме того α – всюду определенная функция, так как иначе , следовательно, .

Пусть теперь минимальный в L элемент, отличный от сØ и от всех сn, тогда определена в некоторой точке х0; пусть , имеем , где , то есть, . Получили противоречие. Ч.т.д. [1,2]


Практическая часть.

Идеалы полурешетки m-степеней частично рекурсивных функций

 

Определение:

Идеалом полурешетки L назовем всякое подмножество I отличное от Ø, удовлетворяющее следующим условиям:

 

1. ;

2. .

 

Идеал называется главным, если он содержит наибольший элемент.

Рассмотрим множество всех m-степеней частичных характеристических функций, то есть:

 

Н={ }.

 

Предположение 4.1:

Множество Н является главным идеалом полурешетки L.

Доказательство:

1. Берем две степени для некоторых р.п. множеств А и В. точной верхней гранью будет степень, содержащая функцию .

Определим множество А В:

 

{ }.


Докажем, что .

Будем пользоваться определением 15 для доказательства данного равенства.

Рассмотрим 4 случая.

 

1) если x=2t,

И если x=2t,

2) Если x=2t,

И если x=2t,

3) Если x=2t+1,

И если x=2t+1,

4) Если x=2t+1,

И если x=2t+1,

 

Следовательно, равенство справедливо во всех четырех случаях, т.к. обе его части равносильны в рассмотренных случаях.

 

.

 

2. Пусть . По определению m-сводимости из следует, что существует рекурсивная функция f такая, что: , откуда . Из утверждения 2.2 и того, что всякое р.п. множество m-сводимо к креативному следует, что: - наибольший элемент в Н, где k – креативно.

Тогда Н – главный идеал полурешетки L. Ч.т.д.

Рассмотрим множество всех m-степеней рекурсивных функций, то есть:

М={ }.

Предположение 4.2: Данное множество М является главным идеалом полурешетки L.

Доказательство:

1. Берем две степени рекурсивных функций, их точной верхней гранью будет , где также рекурсивная функция.

2. Если , откуда существует рекурсивная функция h, такая, что , где также рекурсивная функция. Далее, посредством f(x) для любой рекурсивной функции f(x), отсюда - наибольший элемент в М.

М – главный идеал полурешетки L. Ч.т.д.


Литература

 

1. Дегтев А.Н. Сводимость частично-рекурсивных функций. – Сибирский математический журнал, 1975 т. 16, №5, с. 970-988.

2. Ершов Ю.Л. Теория нумераций. – М.: Наука, 1977.

3. Кагленд Н. Вычислимость. Введение в теорию рекурсивных функций. – М.: Мир, 1983.

4. Мальцев А.И. Алгоритмы и рекурсивные функции. – М.: Наука, 1965.

5. Поляков Е.А., Розинас М.Г. Теория алгоритмов. – Иваново: ИвГУ, 1976.

6. Поляков Е.А., Маринина Н.В. Теория алгоритмов. – Шуя: ШГПУ, 2004.

7. Роджерс Х. Теория рекурсивных функций и эффективная вычислимость. – М.: Мир, 1972.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: