Энергия мирового океана.




Из­ве­ст­но, что за­па­сы энер­гии в Ми­ро­вом оке­а­не ко­лос­саль­ны. Так, те­п­ло­вая (вну­т­рен­няя) энер­гия, со­от­вет­ст­ву­ю­щая пе­ре­гре­ву по­верх­но­ст­ных вод оке­а­на по срав­не­нию с дон­ны­ми, ска­жем, на 20 гра­ду­сов, име­ет ве­ли­чи­ну по­ряд­ка 10 Дж. Ки­не­ти­че­с­кая энер­гия оке­ан­ских те­че­ний оце­ни­ва­ет­ся ве­ли­чи­ной по­ряд­ка 10 Дж. Од­на­ко по­ка что лю­ди уме­ют ути­ли­зо­вать лишь ни­ч­то­ж­ные до­ли этой энер­гии, да и то це­ной боль­ших и ме­д­лен­но оку­па­ю­щих­ся ка­пи­та­ло­вло­же­ний, так что та­кая энер­ге­ти­ка до сих пор ка­за­лась ма­ло­пер­спе­к­тив­ной.

Од­на­ко про­ис­хо­дя­щее весь­ма бы­ст­рое ис­то­ще­ние за­па­сов ис­ко­па­е­мых то­п­лив, ис­поль­зо­ва­ние ко­то­рых к то­му же свя­за­но с су­ще­ст­вен­ным за­гряз­не­ни­ем ок­ру­жа­ю­щей сре­ды, ре­з­кая ог­ра­ни­чен­ность за­па­сов ура­на (энер­ге­ти­че­с­кое ис­поль­зо­ва­ние ко­то­рых к то­му же по­ро­ж­да­ет опа­с­ные ра­дио­ак­тив­ные от­хо­ды) и не­оп­ре­де­лен­ность как сро­ков, так и эко­ло­ги­че­с­ких по­с­лед­ст­вий про­мыш­лен­но­го ис­поль­зо­ва­ния тер­мо­ядер­ной энер­гии за­ста­в­ля­ет уче­ных и ин­же­не­ров уде­лять все боль­шее вни­ма­ние по­ис­кам воз­мо­ж­но­стей рен­та­бель­ной ути­ли­за­ции об­шир­ных и без­вред­ных ис­то­ч­ни­ков энер­гии в Ми­ро­вом оке­а­не. Ши­ро­кая об­ще­ст­вен­ность, да и мно­гие спе­ци­а­ли­сты еще не зна­ют, что по­ис­ко­вые ра­бо­ты по из­вле­че­нию энер­гии из мо­рей и оке­а­нов при­об­ре­ли в по­с­лед­ние го­ды в ря­де стран уже до­воль­но боль­шие мас­шта­бы и что их пер­спе­к­ти­вы ста­но­вят­ся все бо­лее обе­ща­ю­щи­ми.

Наи­бо­лее оче­вид­ным спо­со­бом ис­поль­зо­ва­ния оке­ан­ской энер­гии пред­ста­в­ля­ет­ся по­строй­ка при­лив­ных элек­т­ро­стан­ций (ПЭС). С 1967 г. в устье ре­ки Ранс во Фран­ции на при­ли­вах вы­со­той до 13 ме­т­ров ра­бо­та­ет ПЭС мощ­но­стью 240 тыс. кВт с го­до­вой от­да­чей 540 тыс. кВт ч. Со­вет­ский ин­же­нер Берн­штейн раз­ра­бо­тал удоб­ный спо­соб по­строй­ки бло­ков ПЭС, бу­к­си­ру­е­мых на пла­ву в ну­ж­ные ме­с­та, и рас­счи­тал рен­та­бель­ную про­це­ду­ру вклю­че­ния ПЭС в энер­го­се­ти в ча­сы их ма­к­си­маль­ной на­гру­з­ки по­тре­би­те­ля­ми. Его идеи про­ве­ре­ны на ПЭС, по­стро­ен­ной в 1968 го­ду в Ки­с­лой Гу­бе око­ло Мур­ман­ска; сво­ей оче­ре­ди ждет ПЭС на 6 млн. кВт в Ме­зен­ском за­ли­ве на Ба­рен­це­вом мо­ре.

Не­ожи­дан­ной воз­мо­ж­но­стью оке­ан­ской энер­ге­ти­ки ока­за­лось вы­ра­щи­ва­ние с пло­тов в оке­а­не бы­ст­ро­ра­сту­щих ги­гант­ских во­до­ро­с­лей, лег­ко пе­ре­ра­ба­ты­ва­е­мых в ме­тан для энер­ге­ти­че­с­кой за­ме­ны при­род­но­го га­за. По име­ю­щим­ся оцен­кам, для по­л­но­го обес­пе­че­ния энер­ги­ей ка­ж­до­го че­ло­ве­ка - по­тре­би­те­ля до­с­та­то­ч­но од­но­го ге­к­та­ра план­та­ций во­до­ро­с­лей.

Боль­шое вни­ма­ние при­об­ре­ла "оке­а­но­тер­ми­че­с­кая энер­го­кон­вер­сия" (ОТ­ЭК), т.е. по­лу­че­ние элек­т­ро­энер­гии за счет раз­но­сти тем­пе­ра­тур ме­ж­ду по­верх­но­ст­ны­ми и за­са­сы­ва­е­мы­ми на­со­сом глу­бин­ны­ми оке­ан­ски­ми во­да­ми, на­при­мер при ис­поль­зо­ва­нии в замк­ну­том ци­к­ле тур­би­ны та­ких лег­ко­ис­па­ря­ю­щих­ся жид­ко­стей как про­пан, фре­он или ам­мо­ний. В ка­кой-то ме­ре ана­ло­ги­ч­ны­ми, но как по­ка ка­жет­ся, ве­ро­ят­но, бо­лее да­ле­ки­ми пред­ста­в­ля­ют­ся пер­спе­к­ти­вы по­лу­че­ния элек­т­ро­энер­гии за счет раз­ли­чия ме­ж­ду со­ле­ной и пре­сной, на­при­мер мор­ской и ре­ч­ной во­дой.

Уже не­ма­ло ин­же­нер­но­го ис­кус­ст­ва вло­же­но в ма­ке­ты ге­не­ра­то­ров элек­т­ро­энер­гии, ра­бо­та­ю­щих за счет мор­ско­го во­л­не­ния, при­чем об­су­ж­да­ют­ся пер­спе­к­ти­вы элек­т­ро­стан­ций с мощ­но­стя­ми на мно­гие ты­ся­чи ки­ло­ватт. Еще боль­ше су­лят ги­гант­ские тур­би­ны на та­ких ин­тен­сив­ных и ста­биль­ных оке­ан­ских те­че­ни­ях, как Гольф­ст­рим.

Пред­ста­в­ля­ет­ся, что не­ко­то­рые из пред­ла­гав­ших­ся оке­ан­ских энер­ге­ти­че­с­ких ус­та­но­вок мо­гут быть ре­а­ли­зо­ва­ны, и стать рен­та­бель­ны­ми уже в на­сто­я­щее вре­мя. Вме­сте с тем сле­ду­ет ожи­дать, что твор­че­с­кий эн­ту­зи­азм, ис­кус­ст­во и изо­б­ре­та­тель­ность на­уч­но-ин­же­нер­ных ра­бот­ни­ков улуч­шить су­ще­ст­ву­ю­щие и со­з­да­дут но­вые пер­спе­к­ти­вы для про­мыш­лен­но­го ис­поль­зо­ва­ния энер­ге­ти­че­с­ких ре­сур­сов Ми­ро­во­го оке­а­на. Ду­ма­ет­ся, что при со­в­ре­мен­ных тем­пах на­уч­но-тех­ни­че­с­ко­го про­грес­са су­ще­ст­вен­ные сдви­ги в оке­ан­ской энер­ге­ти­ке дол­ж­ны про­изой­ти в бли­жай­шие де­ся­ти­ле­тия. Оке­ан на­по­л­нен вне­зем­ной энер­ги­ей, ко­то­рая по­сту­па­ет в не­го из ко­с­мо­са. Она до­с­туп­на и бе­з­о­па­с­на, и не за­гряз­ня­ет ок­ру­жа­ю­щую сре­ду, не­ис­ся­ка­е­ма и сво­бод­на. Из ко­с­мо­са по­сту­па­ет энер­гия Солн­ца. Она на­гре­ва­ет воз­дух и об­ра­зу­ет ве­т­ры, вы­зы­ва­ю­щие во­л­ны. Она на­гре­ва­ет оке­ан, ко­то­рый на­ка­п­ли­ва­ет те­п­ло­вую энер­гию. Она при­во­дит в дви­же­ние те­че­ния, ко­то­рые в то же вре­мя ме­ня­ют свое на­пра­в­ле­ние под воз­дей­ст­ви­ем вра­ще­ния Зе­м­ли.

Из ко­с­мо­са же по­сту­па­ет энер­гия со­л­не­ч­но­го и лун­но­го при­тя­же­ния. Она яв­ля­ет­ся дви­жу­щей си­лой си­с­те­мы Зе­м­ля - Лу­на и вы­зы­ва­ет при­ли­вы и от­ли­вы.

Оке­ан - это не пло­с­кое, без­жиз­нен­ное вод­ное про­стран­с­т­во, а ог­ром­ная кла­до­вая бес­по­кой­ной энер­гии. Здесь пле­щут во­л­ны, ро­ж­да­ют­ся при­ли­вы и от­ли­вы, пе­ре­се­ка­ют­ся те­че­ния, и все это на­по­л­не­но энер­ги­ей.

Ба­ке­ны и ма­я­ки, ис­поль­зу­ю­щие энер­гию волн, уже усе­я­ли при­бре­ж­ные во­ды Япо­нии. В те­че­ние мно­гих лет ба­ке­ны – сви­ст­ки бе­ре­го­вой ох­ра­ны США дей­ст­ву­ют бла­го­да­ря во­л­но­вым ко­ле­ба­ни­ям. Се­го­д­ня вряд ли су­ще­ст­ву­ет при­бре­ж­ный рай­он, где не бы­ло бы сво­его соб­ст­вен­но­го изо­б­ре­та­те­ля, ра­бо­та­ю­ще­го над со­з­да­ни­ем ус­т­рой­ст­ва, ис­поль­зу­ю­ще­го энер­гию волн.

На­чи­ная с 1966 го­да два фран­цуз­ских го­ро­да по­л­но­стью удо­в­ле­тво­ря­ют свои по­треб­но­сти в элек­т­ро­энер­гии за счет энер­гии при­ли­вов и от­ли­вов. Энер­го­ус­та­нов­ка на ре­ке Ранс (Бре­тань), со­сто­я­щая из два­д­ца­ти че­ты­рех ре­вер­сив­ных тур­бо­ге­не­ра­то­ров, ис­поль­зу­ет эту энер­гию. Вы­ход­ная мощ­ность ус­та­нов­ки 240 ме­га­ватт - од­на из наи­бо­лее мощ­ных ги­д­ро­элек­т­ро­стан­ций во Фран­ции.

В 70-х го­дах си­ту­а­ция в энер­ге­ти­ке из­ме­ни­лась. Ка­ж­дый раз, ко­г­да по­став­щи­ки на Бли­ж­нем Вос­то­ке, в Аф­ри­ке и Юж­ной Аме­ри­ке под­ни­ма­ли це­ны на нефть, энер­гия при­ли­вов ста­но­ви­лась все бо­лее при­вле­ка­тель­ной, так как она ус­пеш­но кон­ку­ри­ро­ва­ла в це­не с ис­ко­па­е­мы­ми ви­да­ми то­п­ли­ва. Вско­ре за этим в Со­вет­ском Со­ю­зе, Юж­ной Ко­рее и Ан­г­лии воз­рос ин­те­рес к очер­та­ни­ям бе­ре­го­вых ли­ний и воз­мо­ж­но­стям со­з­да­ния на них энер­го­ус­та­но­вок. В этих стра­нах ста­ли все­рь­ез по­ду­мы­вать об ис­поль­зо­ва­нии энер­гии при­ли­вов волн и вы­де­лять сред­ст­ва на на­уч­ные ис­сле­до­ва­ния в этой об­ла­с­ти, пла­ни­ро­вать их.

Не так дав­но груп­па уче­ных оке­а­но­ло­гов об­ра­ти­ла вни­ма­ние на тот факт, что Гольф­ст­рим не­сет свои во­ды вбли­зи бе­ре­гов Фло­ри­ды со ско­ро­стью 5 миль в час. Идея ис­поль­зо­вать этот по­ток те­п­лой во­ды бы­ла весь­ма за­ман­чи­вой.

Воз­мо­ж­но ли это? Смо­гут ли ги­гант­ские тур­би­ны и под­вод­ные про­пел­ле­ры, на­по­ми­на­ю­щие ве­т­ря­ные мель­ни­цы, ге­не­ри­ро­вать элек­т­ри­че­ст­во, из­вле­кая энер­гию из те­че­ний и во­ли? "Смо­гут" - та­ко­во в 1974 го­ду бы­ло за­клю­че­ние Ко­ми­те­та Мак-Ар­ту­ра, на­хо­дя­ще­го­ся под эги­дой На­ци­о­наль­но­го уп­ра­в­ле­ния по ис­сле­до­ва­нию оке­а­на и ат­мо­сфе­ры в Май­а­ми (Фло­ри­да). Об­щее мне­ние за­клю­ча­лось в том, что име­ют ме­с­то оп­ре­де­лен­ные про­б­ле­мы, но все они мо­гут быть ре­ше­ны в слу­чае вы­де­ле­ния ас­сиг­но­ва­ний, так как "в этом про­ек­те нет ни­че­го та­ко­го, что пре­вы­ша­ло бы воз­мо­ж­но­сти со­в­ре­мен­ной ин­же­нер­ной и тех­но­ло­ги­че­с­кой мы­с­ли".

В оке­а­не су­ще­ст­ву­ет за­ме­ча­тель­ная сре­да для под­дер­жа­ния жиз­ни, в со­став ко­то­рой вхо­дят пи­та­тель­ные ве­ще­ст­ва, со­ли и дру­гие ми­не­ра­лы. В этой сре­де рас­тво­рен­ный в во­де ки­с­ло­род пи­та­ет всех мор­ских жи­вот­ных от са­мых ма­лень­ких до са­мых боль­ших, от аме­бы до аку­лы. Рас­тво­рен­ный уг­ле­ки­с­лый газ то­ч­но так же под­дер­жи­ва­ет жизнь всех мор­ских рас­те­ний от од­но­кле­то­ч­ных ди­а­то­мо­вых во­до­ро­с­лей до до­с­ти­га­ю­щих вы­со­ты 60-90 ме­т­ров бу­рых во­до­ро­с­лей.

Мор­ско­му био­ло­гу ну­ж­но сде­лать лишь шаг впе­ред, что­бы пе­рей­ти от вос­при­ятия оке­а­на как при­род­ной си­с­те­мы под­дер­жа­ния жиз­ни к по­пыт­ке на­чать на на­уч­ной ос­но­ве из­вле­кать из этой си­с­те­мы энер­гию.

При под­дер­ж­ке во­ен­но-мор­ско­го фло­та США в се­ре­ди­не 70-х го­дов груп­па спе­ци­а­ли­стов в об­ла­с­ти ис­сле­до­ва­ния оке­а­на, мор­ских ин­же­не­ров и во­до­ла­зов со­з­да­ла пер­вую в ми­ре оке­ан­скую энер­ге­ти­че­с­кую фер­му на глу­би­не 12 ме­т­ров под за­ли­той сол­н­цем гла­дью Ти­хо­го оке­а­на вбли­зи го­ро­да Сан-Кле­мент. Фер­ма бы­ла не­боль­шая. По су­ти сво­ей, все это бы­ло лишь экс­пе­ри­мен­том. На фер­ме вы­ра­щи­ва­лись бу­рые ги­гант­ские ка­ли­фор­ний­ские во­до­ро­с­ли.

По мне­нию ди­ре­к­то­ра про­ек­та до­к­то­ра Го­вар­да А. Уил­ко­к­са, со­т­руд­ни­ка Цен­т­ра ис­сле­до­ва­ния мор­ских и оке­ан­ских си­с­тем в Сан-Ди­е­го (Ка­ли­фор­ния), "до 50 % энер­гии этих во­до­ро­с­лей мо­жет быть пре­вра­ще­но в то­п­ли­во - в при­род­ный газ ме­тан. Оке­ан­ские фер­мы бу­ду­ще­го, вы­ра­щи­ва­ю­щие бу­рые во­до­ро­с­ли на пло­ща­ди при­мер­но 40 000 га, смо­гут да­вать энер­гию, ко­то­рой хва­тит, что­бы по­л­но­стью удо­в­ле­тво­рить по­треб­но­сти аме­ри­кан­ско­го го­ро­да с на­се­ле­ни­ем в 50 000 че­ло­век".

В на­ши дни, ко­г­да воз­ро­с­ла не­об­хо­ди­мость в но­вых ви­дах то­п­ли­ва, оке­а­но­гра­фы, хи­ми­ки, фи­зи­ки, ин­же­не­ры и тех­но­ло­ги об­ра­ща­ют все боль­шее вни­ма­ние на оке­ан как на по­тен­ци­аль­ный ис­то­ч­ник энер­гии. В оке­а­не рас­тво­ре­но ог­ром­ное ко­ли­че­ст­во со­лей. Мо­жет ли со­ле­ность быть ис­поль­зо­ва­на, как ис­то­ч­ник энер­гии? Мо­жет. Боль­шая кон­цен­т­ра­ция со­ли в оке­а­не на­ве­ла ряд ис­сле­до­ва­те­лей Скрипп­ско­го оке­а­но­гра­фи­че­с­ко­го ин­сти­ту­та в Ла-Кол­ла (Ка­ли­фор­ния) и дру­гих цен­т­ров на мысль о со­з­да­нии та­ких ус­та­но­вок. Они счи­та­ют, что для по­лу­че­ния боль­шо­го ко­ли­че­ст­ва энер­гии впол­не воз­мо­ж­но скон­ст­ру­и­ро­вать ба­та­реи, в ко­то­рых про­ис­хо­ди­ли бы ре­ак­ции ме­ж­ду со­ле­ной и не­со­ле­ной во­дой.

Тем­пе­ра­ту­ра во­ды оке­а­на в раз­ных ме­с­тах раз­ли­ч­на. Ме­ж­ду тро­пи­ком Ра­ка и тро­пи­ком Ко­зе­ро­га по­верх­ность во­ды на­гре­ва­ет­ся до 82 гра­ду­сов по Фа­рен­гей­ту (27 C). На глу­би­не 600 ме­т­ров тем­пе­ра­ту­ра па­да­ет до 35,36,37 или 38 гра­ду­сов по Фа­рен­гей­ту (2-3.5 С). Воз­ни­ка­ет во­п­рос: есть ли воз­мо­ж­ность ис­поль­зо­вать раз­ни­цу тем­пе­ра­тур для по­лу­че­ния энер­гии? Мог­ла бы те­п­ло­вая энер­го­ус­та­нов­ка, плы­ву­щая под во­дой, про­из­во­дить элек­т­ри­че­ст­во? Да, и это воз­мо­ж­но.

В да­ле­кие 20-е го­ды прошлого сто­ле­тия Жорж Клод, ода­рен­ный, ре­ши­тель­ный и весь­ма на­стой­чи­вый фран­цуз­ский фи­зик, ре­шил ис­сле­до­вать та­кую воз­мо­ж­ность. Вы­брав уча­сток оке­а­на вбли­зи бе­ре­гов Ку­бы, он су­мел-та­ки по­с­ле се­рии не­уда­ч­ных по­пы­ток по­лу­чить ус­та­нов­ку мощ­но­стью 22 ки­ло­ват­та. Это яви­лось боль­шим на­уч­ным до­с­ти­же­ни­ем и при­вет­ст­во­ва­лось мно­ги­ми уче­ны­ми.

Ис­поль­зуя те­п­лую во­ду на по­верх­но­сти и хо­лод­ную на глу­би­не и со­з­дав со­от­вет­ст­ву­ю­щую тех­но­ло­гию, мы рас­по­ла­га­ем всем не­об­хо­ди­мым для про­из­вод­ст­ва элек­т­ро­энер­гии, уве­ря­ли сто­рон­ни­ки ис­поль­зо­ва­ния те­п­ло­вой энер­гии оке­а­на. "Со­г­ла­с­но на­шим оцен­кам, в этих по­верх­но­ст­ных во­дах име­ют­ся за­па­сы энер­гии, ко­то­рые в 10 000 раз пре­вы­ша­ют об­ще­ми­ро­вую по­треб­ность в ней". "Увы, - воз­ра­жа­ли ске­п­ти­ки, - Жорж Клод по­лу­чил в за­ли­ве Ма­тан­сас все­го 22 ки­ло­ват­та элек­т­ро­энер­гии. Да­ло ли это при­быль?" Не да­ло, так как, что­бы по­лу­чить эти 22 ки­ло­ват­та, Кло­ду при­шлось за­тра­тить 80 ки­ло­ватт на ра­бо­ту сво­их на­со­сов.

Се­го­д­ня про­фес­сор Скрипп­ско­го ин­сти­ту­та оке­а­но­гра­фии Джон Иса­акс де­ла­ет вы­чи­с­ле­ния бо­лее ак­ку­рат­но. По его оцен­кам, со­в­ре­мен­ная тех­но­ло­гия по­з­во­лит со­з­да­вать энер­го­ус­та­нов­ки, ис­поль­зу­ю­щие для про­из­вод­ст­ва элек­т­ри­че­ст­ва раз­ни­цу тем­пе­ра­тур в оке­а­не, ко­то­рые про­из­во­ди­ли бы его в два раза боль­ше, чем об­ще­ми­ро­вое по­треб­ле­ние на се­го­д­няш­ний день. Это бу­дет элек­т­ро­энер­гия, про­из­во­ди­мая элек­т­ро­стан­ци­ей, пре­об­ра­зу­ю­щей тер­маль­ную энер­гию оке­а­на (ОТЕС).

Од­на­ко са­мо­ле­ты и лег­ко­вые ав­то­мо­би­ли, ав­то­бу­сы и гру­зо­ви­ки мо­гут при­во­дить­ся в дви­же­ние га­зом, ко­то­рый мо­ж­но из­вле­кать из во­ды, а уж во­ды-то в мо­рях до­с­та­то­ч­но. Этот газ - во­до­род, и он мо­жет ис­поль­зо­вать­ся в ка­че­ст­ве го­рю­че­го. Во­до­род - один из наи­бо­лее рас­про­стра­нен­ных эле­мен­тов во Все­лен­ной. В оке­а­не он со­дер­жит­ся в ка­ж­дой ка­п­ле во­ды. По­м­ни­те фор­му­лу во­ды? Фор­му­ла H-OH зна­чит, что мо­ле­ку­ла во­ды со­сто­ит из двух ато­мов во­до­ро­да и од­но­го ато­ма ки­с­ло­ро­да. Из­вле­чен­ный из во­ды во­до­род мо­ж­но сжи­гать как то­п­ли­во и ис­поль­зо­вать не толь­ко для то­го, что­бы при­во­дить в дви­же­ние раз­ли­ч­ные тран­с­порт­ные сред­ст­ва, но и для по­лу­че­ния элек­т­ро­энер­гии.

Все боль­шее чи­с­ло хи­ми­ков и ин­же­не­ров с эн­ту­зи­аз­мом от­но­сит­ся к "во­до­род­ной энер­ге­ти­ке" бу­ду­ще­го, так как по­лу­чен­ный во­до­род до­с­та­то­ч­но удоб­но хра­нить: в ви­де сжа­то­го га­за в тан­ке­рах или в сжи­жен­ном ви­де в кри­о­ген­ных кон­тей­не­рах при тем­пе­ра­ту­ре -203 С. Его мо­ж­но хра­нить и в твер­дом ви­де по­с­ле со­еди­не­ния с же­ле­зо-ти­та­но­вым спла­вом или с маг­ни­ем для об­ра­зо­ва­ния ме­тал­ли­че­с­ких ги­д­ри­дов. По­с­ле это­го их мо­ж­но лег­ко тран­с­пор­ти­ро­вать и ис­поль­зо­вать по ме­ре не­об­хо­ди­мо­сти. В 60-е го­ды спе­ци­а­ли­стам из НА­СА уда­лось столь ус­пеш­но осу­ще­ст­вить про­цесс элек­т­ро­ли­за во­ды и столь эф­фе­к­тив­но со­би­рать вы­сво­бо­ж­да­ю­щий­ся во­до­род, что по­лу­ча­е­мый та­ким об­ра­зом во­до­род ис­поль­зо­вал­ся во вре­мя по­ле­тов по про­грам­ме "Апол­лон".

Та­ким об­ра­зом, в оке­а­не, ко­то­рый со­ста­в­ля­ет 71 про­цент по­верх­но­сти пла­не­ты, по­тен­ци­аль­но име­ют­ся раз­ли­ч­ные ви­ды энер­гии - энер­гия волн и при­ли­вов; энер­гия хи­ми­че­с­ких свя­зей га­зов, пи­та­тель­ных ве­ществ, со­лей и дру­гих ми­не­ра­лов; скры­тая энер­гия во­до­ро­да, на­хо­дя­ще­го­ся в мо­ле­ку­лах во­ды; энер­гия те­че­ний, спо­кой­но и не­скон­ча­е­мо дви­жу­щих­ся в раз­ли­ч­ных ча­с­тях оке­а­на; уди­ви­тель­ная по за­па­сам энер­гия, ко­то­рую мо­ж­но по­лу­чать, ис­поль­зуя раз­ни­цу тем­пе­ра­тур во­ды оке­а­на на по­верх­но­сти и в глу­би­не, и их мо­ж­но пре­об­ра­зо­вать в стан­дарт­ные ви­ды то­п­ли­ва.

Та­кие ко­ли­че­ст­ва энер­гии, мно­го­об­ра­зие ее форм га­ран­ти­ру­ют, что в бу­ду­щем че­ло­ве­че­ст­во не бу­дет ис­пы­ты­вать в ней не­до­с­тат­ка. В то же вре­мя не воз­ни­ка­ет не­об­хо­ди­мо­сти за­ви­сеть от од­но­го - двух ос­нов­ных ис­то­ч­ни­ков энер­гии, ка­ки­ми, на­при­мер, яв­ля­ют­ся дав­но ис­поль­зу­ю­щи­е­ся ис­ко­па­е­мые ви­ды то­п­ли­ва и ядер­но­го го­рю­че­го, ме­то­ды по­лу­че­ния ко­то­ро­го бы­ли раз­ра­бо­та­ны не­дав­но. Ра­зу­ме­ет­ся, тру­д­но да­же пред­ста­вить се­бе пе­ре­ход от столь при­вы­ч­ных, тра­ди­ци­он­ных ви­дов то­п­ли­ва - уг­ля, неф­ти и при­род­но­го га­за - к не­зна­ко­мым, аль­тер­на­тив­ным ме­то­дам по­лу­че­ния энер­гии. Раз­ни­ца тем­пе­ра­тур? Во­до­род, ме­тал­ли­че­с­кие ги­д­ри­ды, энер­ге­ти­че­с­кие фер­мы в оке­а­не? Для мно­гих это зву­чит как на­уч­ная фан­та­сти­ка.

И, тем не ме­нее, не­смо­т­ря на то, что из­вле­че­ние энер­гии оке­а­на на­хо­дят­ся на ста­дии экс­пе­ри­мен­тов и про­цесс ог­ра­ни­чен и до­ро­го­сто­ящ, факт ос­та­ет­ся фа­к­том, что по ме­ре раз­ви­тия на­уч­но-тех­ни­че­с­ко­го про­грес­са энер­гия в бу­ду­щем мо­жет в зна­чи­тель­ной сте­пе­ни до­бы­вать­ся из мо­ря. Ко­г­да - за­ви­сит от то­го, как ско­ро эти про­цес­сы ста­нут до­с­та­то­ч­но де­ше­вы­ми. В ко­не­ч­ном ито­ге де­ло упи­ра­ет­ся не в воз­мо­ж­ность из­вле­че­ния из оке­а­на энер­гии в раз­ли­ч­ных фор­мах, а в сто­и­мость та­ко­го из­вле­че­ния, ко­то­рая оп­ре­де­лит, на­сколь­ко бы­ст­ро бу­дет раз­ви­вать­ся тот или иной спо­соб до­бы­чи. Ко­г­да бы это вре­мя ни на­сту­пи­ло, пе­ре­ход к ис­поль­зо­ва­нию энер­гии оке­а­на при­не­сет двой­ную поль­зу: сэ­ко­но­мит об­ще­ст­вен­ные сред­ст­ва и сде­ла­ет бо­лее жиз­не­спо­соб­ной тре­тью пла­не­ту Со­л­не­ч­ной си­с­те­мы - на­шу Зе­м­лю.

6. За­клю­че­ние.

За вре­мя су­ще­ст­во­ва­ния на­шей ци­ви­ли­за­ции мно­го раз про­ис­хо­ди­ла сме­на тра­ди­ци­он­ных ис­то­ч­ни­ков энер­гии на но­вые, бо­лее со­вер­шен­ные. И не по­то­му, что ста­рый ис­то­ч­ник был ис­чер­пан.

Сол­н­це све­ти­ло и обо­г­ре­ва­ло че­ло­ве­ка все­гда: и тем не ме­нее од­на­ж­ды лю­ди при­ру­чи­ли огонь, на­ча­ли жечь дре­ве­си­ну.

За­тем дре­ве­си­на ус­ту­пи­ла ме­с­то ка­мен­но­му уг­лю. За­па­сы дре­ве­си­ны ка­за­лись без­гра­ни­ч­ны­ми, но па­ро­вые ма­ши­ны тре­бо­ва­ли бо­лее ка­ло­рий­но­го "кор­ма".

Но и это был лишь этап. Уголь вско­ре ус­ту­па­ет свое ли­дер­ст­во на энер­ге­ти­че­с­ком рын­ке неф­ти.

И вот но­вый ви­ток: в на­ши дни ве­ду­щи­ми ви­да­ми то­п­ли­ва по­ка ос­та­ют­ся нефть и газ. Но за ка­ж­дым но­вым ку­бо­мет­ром га­за или тон­ной неф­ти ну­ж­но ид­ти все даль­ше на се­вер или вос­ток, за­ры­вать­ся все глуб­же в зе­м­лю. Не­му­д­ре­но, что нефть и газ бу­дут с ка­ж­дым го­дом сто­ить нам все до­ро­же.

За­ме­на? Ну­жен но­вый ли­дер энер­ге­ти­ки. Им, не­со­м­нен­но, ста­нут ядер­ные ис­то­ч­ни­ки.

За­па­сы ура­на, ес­ли, ска­жем, срав­ни­вать их с за­па­са­ми уг­ля, вро­де бы не столь уж и ве­ли­ки. Но за­то на еди­ни­цу ве­са он со­дер­жит в се­бе энер­гии в мил­ли­о­ны раз боль­ше, чем уголь. А итог та­ков: при по­лу­че­нии элек­т­ро­энер­гии на АЭС ну­ж­но за­тра­тить, счи­та­ет­ся, в сто ты­сяч раз мень­ше средств и тру­да, чем при из­вле­че­нии энер­гии из уг­ля. И ядер­ное го­рю­чее при­хо­дит на сме­ну неф­ти и уг­лю... Все­гда бы­ло так: сле­ду­ю­щий ис­то­ч­ник энер­гии был и бо­лее мощ­ным. То бы­ла, ес­ли мо­ж­но так вы­ра­зить­ся, "во­ин­ст­ву­ю­щая" ли­ния энер­ге­ти­ки.

В по­го­не за из­быт­ком энер­гии че­ло­век все глуб­же по­гру­жал­ся в сти­хий­ный мир при­род­ных яв­ле­ний и до ка­кой-то по­ры не очень за­ду­мы­вал­ся о по­с­лед­ст­ви­ях сво­их дел и по­ступ­ков.

Но вре­ме­на из­ме­ни­лись. Сей­час на­чи­на­ет­ся но­вый, зна­чи­тель­ный этап зем­ной энер­ге­ти­ки. По­я­ви­лась "ща­дя­щая" энер­ге­ти­ка, по­стро­ен­ная так, что­бы че­ло­век не ру­бил сук, на ко­то­ром он си­дит. За­бо­тил­ся об ох­ра­не уже силь­но по­вре­ж­ден­ной био­сфе­ры.

Не­со­м­нен­но, в бу­ду­щем па­рал­лель­но с ли­ни­ей ин­тен­сив­но­го раз­ви­тия энер­ге­ти­ки по­лу­чат ши­ро­кие пра­ва гра­ж­дан­с­т­ва и ли­ния экс­тен­сив­ная: рас­сре­до­то­чен­ные ис­то­ч­ни­ки энер­гии не слиш­ком боль­шой мощ­но­сти, но за­то с вы­со­ким КПД, эко­ло­ги­че­с­ки чи­с­тые, удоб­ные в об­ра­ще­нии.

Яр­кий при­мер то­му - бы­ст­рый старт элек­т­ро­хи­ми­че­с­кой энер­ге­ти­ки, ко­то­рую позд­нее, ви­ди­мо, до­по­л­нит энер­ге­ти­ка со­л­не­ч­ная.

Энер­ге­ти­ка очень бы­ст­ро ак­ку­му­ли­ру­ет, ас­си­ми­ли­ру­ет, вби­ра­ет в се­бя все са­мые но­вей­шие идей, изо­б­ре­те­ния, до­с­ти­же­ния на­у­ки. Это и по­нят­но: энер­ге­ти­ка свя­за­на бу­к­валь­но со всем, и все тя­нет­ся к энер­ге­ти­ке, за­ви­сит от нее.

По­э­то­му энер­го­хи­мия, во­до­род­ная энер­ге­ти­ка, ко­с­ми­че­с­кие элек­т­ро­стан­ции, энер­гия, за­пе­ча­тан­ная в ан­ти­ве­ще­ст­ве, квар­ках, "чер­ных ды­рах", ва­ку­у­ме, - это все­го лишь наи­бо­лее яр­кие ве­хи, штри­хи, от­дель­ные чер­то­ч­ки то­го сце­на­рия, ко­то­рый пи­шет­ся на на­ших гла­зах и ко­то­рый мо­ж­но на­звать Зав­т­раш­ним Днем Энер­ге­ти­ки.

Ла­би­рин­ты энер­ге­ти­ки. Та­ин­ст­вен­ные пе­ре­хо­ды, уз­кие, из­ви­ли­стые троп­ки. Пол­ные за­га­док, пре­пят­ст­вий, не­ожи­дан­ных оза­ре­ний, во­плей пе­ча­ли и по­ра­же­ний, кли­ков ра­до­сти и по­бед. Тер­нист, не­прост, не­прям энер­ге­ти­че­с­кий путь че­ло­ве­че­ст­ва. Но мы ве­рим, что мы на пу­ти к Эре Энер­ге­ти­че­с­ко­го Изо­би­лия и что все пре­по­ны, пре­гра­ды и тру­д­но­сти бу­дут пре­одо­ле­ны.

Рас­сказ об энер­гии мо­жет быть бес­ко­не­чен, не­ис­чи­с­ли­мы аль­тер­на­тив­ные фор­мы ее ис­поль­зо­ва­ния при ус­ло­вии, что мы дол­ж­ны раз­ра­бо­тать для это­го эф­фе­к­тив­ные и эко­но­ми­ч­ные ме­то­ды. Не так ва­ж­но, ка­ко­во ва­ше мне­ние о ну­ж­дах энер­ге­ти­ки, об ис­то­ч­ни­ках энер­гии, ее ка­че­ст­ве, и се­бе­сто­и­мо­сти. Нам, по-ви­ди­мо­му, сле­ду­ет лишь со­г­ла­сить­ся с тем, что ска­зал уче­ный му­д­рец, имя ко­то­ро­го ос­та­лось не­из­ве­ст­ным: "Нет про­стых ре­ше­ний, есть толь­ко ра­зум­ный вы­бор".

Список использованной литературы.

1. Энциклопедия для детей. Том 3. География. Под редакцией М. Аксёновой и др. – 3- е изд., испр. - М.: «Аванта+», 1999. – 640 с.

2. Алисов, Н. В. Физическая и экономическая география мира. 2 – е изд. / Н. В. Алисов – М.: «Айрис - пресс», 2003. – 349 с.

3. Голдин, А. Океаны энергии. / А Голдин – М.: «Знание», 1983. – 87 с.

4. Гаврилов, В.П. Чёрное золото планеты. / В.П Гаврилов – М.: «Недра», 1990. - 160 с.

5. Куликов, Л.М. Основы экономической теории: учебное пособие. / Л.М. Куликов – М.: «Финансы и статистика», 2003. –393 с.

6. Родионова, И. А. Экономическая география. Полный курс для поступающих в вузы: учебно-справочное пособие. В 2–ух томах. / И. А. Родионова – М.: «Экзамен», 2003. – 416 с.

7. Юдасин, Л. С. Энергетика: проблемы и надежды. / Л. С. Юдасин – М.: «Просвещение», 1990. – 207 с.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: