Глава 3 СПОСОБЫ ПРОИЗВОДСТВА ПЭТФ В ПРОМЫШЛЕННОСТИ




 

Полиэтилентерефталат - это пластик на основе смол, получаемых путем сложного химического процесса из нефти и газового конденсата. Исходным сырьем для производства полиэтилентерефталата различного назначения служат:

· моноэтиленгликоль (МЭГ) и очищенная терефталевая кислота (ОТФК), либо

· диметиловый эфир терефталевой кислоты (ДМТ)

Терефталевую кислоту и ДМТ в свою очередь производят из параксилола.

Сырьем для производства ПЭТФ обычно служит диметиловый эфир терефталевой кислоты с этиленгликолем. Получают полиэтилентерефталат поликонденсацией терефталевой кислоты (бесцветные кристаллы) или ее диметилового эфира с этиленгликолем (жидкость) по периодической или непрерывной схеме в две стадии. По технико-экономическим показателям преимущество имеет непрерывный процесс получения ПЭТ из кислоты и этиленгликоля. Этерификацию кислоты этиленгликолем (молярное соотношение компонентов от 1:1,2 до 1:1,5) проводят при 240-2700С и давлении 0,1-0,2МПа.

Обычно материал с более низкой молекулярной массой (М - 20 000) применяется для изготовления волокон; в других приложениях используется материал с более высокой молекулярной массой.

Полученную смесь бис-(2-гидроксиэтил)терефталата с его олигомерами подвергают поликонденсации в нескольких последовательно расположенных аппаратах, снабженных мешалками, при постепенном повышении температуры от 270 до 3000С и снижении разряжения от 6600 до 66 Па.

После завершения процесса расплав полиэтилентерефталата выдавливается из аппарата, охлаждается и гранулируется или направляется на формование волокна. Матирующие агенты (TiO2), красители, инертные наполнители (каолин, тальк), антипирены, термо- и светостабилизаторы и другие добавки вводят во время синтеза или в полученный расплав полиэтилентерефталата.

Достигнутая регулярность строения полимерной цепи повышает способность к кристаллизации, которая в значительной степени определяет механические свойства. Фениленовая группа в основной цепи придает жесткость скелету и повышает температуру стеклования и температуру плавления. Химическая стойкость ПЭТ близка к таковой у полиамидов, и он проявляет очень хорошие барьерные свойства. ПЭТ обладает способностью существовать в аморфном или кристаллическом состояниях, причем степень кристалличности определяется термической предысторией материала.

При быстром охлаждении ПЭТ аморфен и прозрачен, при медленном – кристалличен (до 50%).

Товарный ПЭТ выпускается обычно в виде гранулята с размером гранул 2-4 миллиметра. Производители ПЭТ в основном находятся за пределами России и СНГ.

В промышленности ПЭТФ обычно получали двухстадийным способом: переэтерификацией диметилтерефталата (DMT) этиленгликолем с последующей поликонденсацией полученного на первой стадии процесса дигликольтерефталата (DGT)). Вплоть до середины 60-х годов прошлого столетия диметилтерефталат, несмотря на многостадийность технологии, являлся единственным мономером для получения ПЭТФ. Разработанные в то время промышленные процессы не позволяли обеспечить необходимую степень чистоты терефталевой кислоты, поэтому из нее вырабатывали ДМТ, который, благодаря низкой температуре кипения, легко подвергался очистке методом дистилляции и кристаллизации.

В 1965 году американская Аmoco Соrporation усовершенствовала технологию получения и очистки терефталевой кислоты и построила первую промышленную установку по производству ОТФК. Основной примесью технической терефталевой кислоты, полученной каталитическим окислением пара-ксилола в присутствии гомогенных катализаторов (обычно соли Со и Мn) и промоторов, является промежуточный продукт ее окисления - n-карбоксибензальдегид. Для очистки раствора технической терефталевой кислоты Аmoco Соrporation предложила использовать процесс каталитического гидрирования. В качестве катализатора был выбран палладий, нанесенный на активированный уголь. В результате гидрирования карбоксибензальдегид и ряд других окрашенных примесей переходят в более растворимые соединения, что позволяет получать кристаллы ОТФК при охлаждении полученного раствора. В настоящее время описанный способ очистки технического раствора терефталевой кислоты широко используется в современном производстве ОТФК.

Таким образом, в последнее время в мире широкое распространение получил одностадийный синтез ПЭТФ из этиленгликоля и терефталевой кислоты (TFK) по непрерывной схеме. И именно данный способ признается весьма перспективным.

Анализ научной и патентной литературы показывает, что идет непрерывный процесс совершенствования и поиска новых нанесенных палладиевых катализаторов. Катализаторы марок МРВ5, МРВ5-НD (Sud Chemie, Германия) и Е1802 (Degussa Со, Германия) предложены на рынке специально для очистки технического раствора терефталевой кислоты. Расширение производства ОТФК оказывает существенное влияние на количество палладия, потребляемого для приготовления промышленных катализаторов.

Технологический прорыв в производстве ОТФК привел к постепенному замещению ДМТ как мономера для получения ПЭТФ и различной полиэфирной продукции. Доля ОТФК в суммарном объеме производства ОТФК и ДМТ растет из года в год. В настоящее время около 90 % производителей полиэфирных нитей и волокон в качестве исходного сырья используют терефталевую кислоту.

Для поддержания рыночной конкурентоспособности ПЭТФ, полученной на основе ДМТ, предлагаются варианты модернизации старых производств (например, способ американской Glitsch Technology Corp.). Реконструкция установок ДМТ с переводом их на выпуск ОТФК требует больших финансовых затрат и экономически не выгодна.

К основным преимуществам использования ОТФК вместо ДМТ следует отнести:

- низкие капитальные и эксплутационные затраты в производстве ОТФК и ПЭТФ на основе ОТФК;

- отсутствие применения высокотоксичного метанола, использующегося в качестве растворителя при получении ДМТ;

- уменьшение, из-за разницы в молекулярных массах, расхода ОТФК на одну тонну ПЭТФ, а также расхода моноэтиленгликоля при получении ПЭТФ;

- обеспечение снижения себестоимости конечного продукта не менее чем на 12 % при использовании терефталевой кислоты в качестве мономера (в зависимости от рыночных колебаний цен на ДМТ и ОТФК).

В то же время при применении уксусной кислоты (в качестве растворителя) в производстве ОТФК, а также бромсодержащих промоторов требуется оборудование, устойчивое к коррозии.

Сегодня ПЭТ используется для производства разнообразнейшей упаковки для продуктов и напитков, косметики и фармацевтических средств, ПЭТ материалы незаменимы при изготовлении аудио, видео и рентгеновских пленок, автомобильных шин, бутылок для напитков, пленок с высокими барьерными свойствами, волокон для тканей. Широкий ряд применений возможен благодаря исключительному балансу возможностей ПЭТ и тому, что в готовом изделии степень кристалличности и уровень ориентации можно контролировать.

Итак, физические свойства ПЭТФ делают его идеальным материалом для использования в следующих основных областях:

· изготовление упаковки (бутылки, коррексы, одноразовая посуда и т.д.)

· плёнок (торговое название «лавсан»)

· волокна (торговое название «полиэстер»)

· конструкционные элементы для строительства, композиционных материалов для машиностроительной промышленности и др

Волокна

Основной областью использования ПЭТФ в мире является изготовление полиэфирных волокон (лавсан или терилен) и нитей. Если в России на производство волокон уходит всего лишь 2% от совокупного потребления ПЭТФ – гранулята, то в мире – около 68%.

Широкоеприменение ПЭТФ началось в 60-е годы первоначально в производстве текстиля. С тех пор спрос неуклонно растет в первую очередь в развитых странах. На рынке ПЭТФ в большинстве регионов отмечается чрезвычайно быстрый рост спроса со стороны продуцентов полиэфирных волокон и нитей. В свою очередь из полиэфирных волокон и нитей ихготавливают полиэфирные (ПЭФ) ткани. Рост спроса на ПЭФ был вызван, в первую очередь, более низкой себестоимостью по сравнению с другими видами химических волокон и нитей. Вторым фактором популярности полиэфира стал широкий спектр применения в связи с прекрасными свойствами материала. По прочности и удлинению полиэфир не уступает полиамиду, а по светоустойчивости превосходит его, по формоустойчивости превосходит самое формоустойчивое из всех природных волокон — шерсть, имеет низкую гигроскопичность и высокую термостойкость, что является достоинством при производстве технических тканей. Различают: Текстильные волокна и нити.

1. Полиэфирные текстильные волокна - производство пряжи полиэфирной и смесовой, широко применяется в производстве хлолпковых, льняных, шерстяных тканей.

2. Полиэфирные текстильные нити- используются в производстве широкого ассортимента различных типов материалов: подкладочные, костюмные ткани и др.

В промышленности PET обычно получают двухстадийным способом: переэтерификацией диметилтерефталата (DMT) этиленгликолем с последующей поликонденсацией полученного на первой стадии процесса дигликольтерефталата (DGT). Однако в последнее время за рубежом широкое распространение получил одностадийный синтез ПЭТ из этиленгликоля и терефталевой кислоты (TFK) по непрерывной схеме. И именно данный способ признается весьма перспективным.

Химическая и физическая структура ПЭТ определяет возможность плотной упаковки макромолекул, а соответственно и способность к кристаллизации. В зависимости от способа получения полимера и скорости охлаждения расплава при переработке возможно получение изделий из PET с различной степенью кристалличности (от стеклообразного аморфного АРЕТ при резком охлаждении до кристаллического при медленной скорости охлаждения). Необходимо отметить, что рост молекулярной массы полимера снижает его способность к кристаллизации и увеличивает вязкость расплава.

Структура ПЭТ придает материалу поистине уникальные свойства:

· высокую прозрачность в аморфном состоянии;

· низкую газопроницаемость, а следовательно, отличные барьерные свойства;

· стойкость к воздействию жиров и минеральных кислот;

· высокую ударопрочность (90кДж/м2) в широком диапазоне температур;

· низкий коэффициент влагопоглощения;

· легкое окрашивание в массе;

· великолепное «восприятие» цветной печати;

· хорошую перерабатываемость метода-ми экструзии, литья под давлением, термоформованием.

Полиэтилентерефталат перерабатывается литьем под давлением, экструзией, формованием. Волокна и тонкие пленки из ПЭТ изготавливают экструзией с охлаждением при комнатной температуре. Степень кристалличности может быть отрегулирована отжигом при некоторой температуре между температурами стеклования Тс и плавления Тпл; максимальная скорость кристаллизации достигается при -170 град. С.

Литьем под давлением из ПЭТ производят в основном преформы для ПЭТ-бутылок. Для этих целей уже достаточно редко используют традиционную схему литья пластмасс: термопластавтомат + литьевая форма. В современных реалиях правят бал специальные комплексы для производства ПЭТ-преформ, включающие все необходимое для интенсивного производства изделий: скоростной ТПА, сложную пресс форму, холодильники, систему роботов.

ПЭТ находит разнообразные применения благодаря широкому спектру свойств, а также возможности управлять его кристалличностью. Основное применение связано с изготовлением ПЭТ-тары, в частности бутылок для газированных напитков, поскольку ПЭТ обладает замечательными барьерными свойствами. В этом случае аморфный ПЭТ подвергается двуосному растяжению выше Tс, для создания кристалличности.

Другие области применения ПЭТ охватывают текстильные волокна, электрическую изоляцию и изделия, получаемые раздувным формованием. Для многих применений лучшими свойствами обладают сополимеры ПЭТ.

Примером изделий из ПЭТ могут служить: детали кузова автомобиля; корпуса швейных машин; ручки электрических и газовых плит; детали двигателей, насосов, компрессоров; детали электротехнического назначения; различные разъемы; изделия медицинского назначения; упаковка из ПЭТ; ПЭТ-преформы и многое другое. В таких изделиях, как бутылки для газированных напитков, используются смеси ПЭТ с полиэтиленнафталатом (ПЭН). ПЭН более дорогой материал, но он медленнее кристаллизуется и имеет менее выраженные эффекты старения.

 

Глава 4 СУРЬМА ИЗ КУБОВЫХ ОСТАТКОВ ПРОИЗВОДСТВА ПОЛИЭФИРОВ

 

Промышленное производство полиэтилентерефталата осуществляется различными способами, однако они имеют много общего. Обычно диметилтерефталат (ДМТФ) или терефталевая кислота (ТФК) конденсируется с этиленгликолем с образованием сложного полиэфира. Обычно процесс производства полиэтилентерефталата ведется в присутствии катализаторов, при повышенных температуре и давлении. Реакция конденсации сопровождается отщеплением метанола или воды. Одним из наиболее распространенных катализаторов является трехокись сурьмы.

Характерной чертой большинства процессов является выделение непрореагировавшего гликоля путем перегонки остатка, загрязненного полиэтилентерефталатом с низким молекулярным весом, трехокисью сурьмы, ДМТФ и ТФК.

В ходе отгонки этиленгликоля (в виде моно-, ди- и тримера) большинство примесей остается на дне перегонной колонны в виде воскообразной гранулированной массы, удаляемой как отход.

Типичный состав такого остатка, включая добавленную воду и небольшое количество гидроксида натрия следующий, %: воды 26; твердого остатка 32; этиленгликоля 36; диэтиленгликоля 4,25; триэтиленгликоля 0,75; сурьмы 7,2 ррт; натрия 4,3 ррт.

Практика прошлых лет по захоронению или сбросу этого остатка в водоемы ныне считается Агентством по защите окружающей среды опасной для здоровья. Установлено предельное содержание сурьмы в промышленных сбросах в водостоки 5 ррт.

Захоронение отходов не является решением проблемы, так как вредные металлы выщелачиваются и уносятся грунтовыми водами. Предварительная обработка по предотвращению выщелачивания или капсулирование экономически неприемлемы.

Сжигание остатка без использования дорогостоящего пылеулавливающего оборудования приводит к вредным выбросам в атмосферу. Аналогично не решает проблему и сброс остатка в воды океанов.

Процесс, разработанный Б. Н. Хоппером и А. Бергхаузеном (патент США 4013519, 22 марта 1977 г.; фирма ч-Сейфтех, Инк.»), предназначен для отделения соединений сурьмы от кубового остатка. Достоинством метода является возможность выделения соединений сурьмы в виде, пригодном для использования, и мономера для получения полиэфиров.

Процесс состоит из следующих стадий:

1.Предварительная обработка кубового остатка определенным количеством воды с последующим щелочным гидролизом при температуре 85—100 °С для расщепления полимера с низкой молекулярной массой и получения соли терефталевой кислоты и этиленгликоля (общее название для смеси моно-, ди-, и триэтиленгликоля).

2.Обработка смеси, образовавшейся на стадии 1, кислотой до значений рН = 6,2—6,5 с выпадением из раствора сурьмы (или соединения сурьмы), которые отделяются и используются в установках по производству сурьмы.

3.Фильтрат после стадии 2 подвергается операции осветления, например активированным углем.

4.Фильтрат после стадии 3, нагретый до ~76 "С, подкисляется до значений рН = 1-3 для осаждения терефталевой кислоты, которая отфильтровывается, промывается и сушится. Она имеет достаточную чистоту и может использоваться как товарный продукт, или возвращаться в цикл производства полиэтилентерефталата.

5.К фильтрату после стадии 4 при температуре 76—100 °С добавляются материалы типа тиосульфата натрия для перевода сурьмы или ее соединений в сульфид сурьмы.

6.Смесь подвергается фильтрованию для отделения выпавшего сульфида сурьмы; фильтрат содержит в основном этиленгликоль, воду, сульфит натрия, и вероятно, бисульфат натрия.

7. Стадия удаления некоторого количества воды после операции 5.

8.К фильтрату после стадии 7 добавляется щелочь для создания значений рН = 6,5-1-8. На этой стадии при необходимости возможно повторение операции 3.

9.Один из традиционных методов отделения и очистки этиленгликоля заключается в добавлении растворителя к смеси после операции 8 для осаждения сульфата натрия.

10.Сульфат натрия отфильтровывается, промывается растворителем и выводится из процесса в виде товарного продукта.

11.Фильтрат после стадии 10, содержащий в основном растворитель, этилен-гликоль и воду, упаривается.

12.Остаток после стадии 11, представляющий собой смесь воды и этиленгликоля, подвергается перегонке с целью отделения этиленгликоля от воды. Полученный этиленгликоль является товарным продуктом. Если не ставится цель выделения этиленгликоля, процесс прекращается после выполнения операции 7.

Остаток подвергается сжиганию с образованием золы, которую обрабатывают водой с образованием водной фазы и твердого осадка. Водорастворимые соединения натрия находятся в водной фазе, соединения сурьмы находятся в твердом осадке. Фазы затем разделяются для выделения содержащихся там соединений.


ЛИТЕРАТУРА

 

1. Быстров Г.А., Гальперин В.М., Титов Б.П. Обезвреживание и утилизация отходов в производстве пластмасс. Л.: Химия, 1982. С. 178 – 214.

2. Стрепихеев А.А., Деревицкая В.А. Основы химии высокомолекулярных соединений. - М.: Химия, 1976. 440 с.

3. Тагер А.А. Физикохимия полимеров. - М.: Химия, 1978. 544 с.

4. Шур А.М. Высокомолекулярные соединения. - М.: Высшая школа, 1981. 656 с.

5. В.Р.Говарикер, Н.В.Висванатхан, Дж.Шридхар. Полимеры. М. Наука, 1990.

6. Семчиков Ю. Д. Высокомолекулярные соединения: Учеб. для вузов. – М.: «Академия», 2005. – с. 256 – 263.

7. Любешкина Е., Аксенова Т. Полиэтилентерефталат, свойства и применение //Пакет. -2000, -№1. -С.19-28.

8. Добрынин А. ПЭТ-гранулят, производство ПЭТ-преформ //Пивное дело. -2001, -№2. -С.16-29.

9. Петляков Г., Редько А. Техника и технология производства ПЭТ-тары и розлива жидкостей //Индустрия упаковки.-2000, №2.-С.22-25.

10. Угольников С., Петляков Г. Полуавтоматическое оборудование для выдува ПЭТ-бутылок // Тара и упаковка. -1998, -№1. -С.46-48.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: