«Колледж Водных ресурсов»
Реферат
Трансформаторы
Выполнил
студент группы ТУ 288
Волков А.Н.
Санкт-Петербург 2016г.
Содержание
Введение
1. Трансформаторы, их назначение
1.1 Трансформатор, его история
1.2 Виды трансформаторов, их значение
1.3 Основные части конструкции трансформатора
2. Принцип действия трансформатора
2.1 Базовые принципы действия трансформатора
2.2 Принцип работы однофазных и трехфазных трансформаторов специального назначения
3.Примеры использования трансформаторов
3.1 Применение в электросетях
3.2 Применение в источниках электропитания
3.3 Другие применения трансформатора
Заключение
Список использованной литературы
Введение
Трансформаторы - наиболее распространенные устройства в современной электротехнике. Трансформаторы большой мощности на напряжение до сотен киловольт составляют основу систем передачи электроэнергии от электростанций в линии электропередачи. Эти трансформаторы повышают напряжение переменного тока до значений, необходимых для экономичной передачи электроэнергии на значительные расстояния. В местах распределения электроэнергии между потребителями применяют трансформаторы, понижающие напряжение до требуемых для потребителя значений. Наряду с этим трансформаторы являются элементами электроприводов, нагревательных и других установок, где они осуществляют преобразование напряжения питающей сети до значений, необходимых для работы электродвигателей, нагревательных печей и других электроустройств.
Трансформатором называют статическое электромагнитное устройство, имеющее две (или более) индуктивно связанные обмотки и предназначенное для преобразования посредством явления электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока.
|
Трансформаторы малой мощности различного назначения используются в устройствах радиотехники, автоматики, сигнализации, связи и т. п., а так же для питания бытовых электроприборов. Назначение силовых трансформаторов - преобразование электрической энергии в электрических сетях и установках, предназначенных для приема и использования электрической энергии.
Трансформаторы специального назначения предназначены для непосредственного питания потребительской сети или приемников электрической энергии, отличающихся особыми условиями работы, характером нагрузки или режимом работы.
Трансформаторы являются наиболее широко используемыми элементами в различной аппаратуре.
Более высокие представление можно обеспечить на основании детальных рассмотрений поставленных вопросов, что и является целью курсовой работы. Сказанное позволяет заключить, что выбранная тема курсовой работы «Трансформаторы» является актуальной.
Объектом исследования в курсовой работе выступает Трансформатор. Предметом исследования является принцип действия, проблемы их исполнения и использовании.
Цель курсовой работы – проанализировать, выявить проблемы и определить перспективы её развития.
Для достижения указанной цели, в работе поставлены следующие задачи:
• изучить исторический аспект изобретения.
• дать детальную характеристику электрического аппарата.
|
• выделить основные принципы, которые характерны для трансформатора
• проанализировать динамику востребовательности с целью выявления основных тенденций;
• оценить перспективы развития;
• направления совершенствования
• В данной работе используются следующие научные методы: сравнение, анализ и синтез, индукция и дедукция, статистический анализ.
Теоретической базой курсовой работы выступили труды ведущих отечественных специалистов по физике.
1. Трансформаторы, их назначение
1.1 Трансформатор, его история
Трансформа́тор (от лат. transformo — преобразовывать) — электрический аппарат, имеющий две или более индуктивно связанные обмотки и предназначенный для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока (ГОСТ Р52002-2003). Трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.
Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.
Столетов Александр Григорьевич (профессор МУ)сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).
Братья Гопкинсоны разработали теорию электромагнитных цепей.
В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.
|
Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока. В 1848 году французский механик Г. Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.
30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки. Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток. С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889 г. предложил трёхфазную систему переменного тока, построил первый трёхфазный асинхронный двигатель и первый трёхфазный трансформатор. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.
1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).
В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.
Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.
1.2 Виды трансформаторов, их значение
Силовой трансформатор
Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.
Автотрансформатор
Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4.Существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.
Трансформатор тока
Трансформатор тока — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала!
Трансформатор напряжения
Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.
Импульсный трансформатор
Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.
Разделительный трансформатор
Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаний к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.
Сдвоенный дроссель
Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.
1.3 Основные части конструкции трансформатора
В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:
Стержневой
Броневой
Тороидальный
Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надёжность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.
В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.
Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.
Основными частями конструкции трансформатора являются:
магнитная система (магнитопровод);
обмотки;
система охлаждения;
Магнитная система (магнитопровод).
Магнитная система (магнитопровод) трансформатора — комплект элементов (чаще всего пластин) электротехнической стали или другого ферромагнитного материала, собранных в определённой геометрической форме, предназначенный для локализации в нём основного магнитного поля трансформатора. Магнитная система в полностью собранном виде совместно со всеми узлами и деталями, служащими для скрепления отдельных частей в единую конструкцию, называется остовом трансформатора.
Часть магнитной системы, на которой располагаются основные обмотки трансформатора, называется — стержень
Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи, называется — ярмо.
В зависимости от пространственного расположения стержней, выделяют:
Плоская магнитная система — магнитная система, в которой продольные оси всех стержней и ярм расположены в одной плоскости
Пространственная магнитная система — магнитная система, в которой продольные оси стержней или ярм расположены в разных плоскостях
Симметричная магнитная система — магнитная система, в которой все стержни имеют одинаковую форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стержней
Несимметричная магнитная система — магнитная система, в которой отдельные стержни могут отличаться от других стержней по форме, конструкции или размерам или взаимное расположение какого-либо стержня по отношению к другим стержням или ярмам может отличаться от расположения любого другого стержня
Обмотки
Основным элементом обмотки является виток — электрический проводник, или ряд параллельно соединённых таких проводников (многопроволочная жила), однократно обхватывающий часть магнитной системы трансформатора, электрический ток которого совместно с токами других таких проводников и других частей трансформатора создаёт магнитное поле трансформатора и в котором под действием этого магнитного поля наводится электродвижущая сила.
Транспонированный кабель применяемый в обмотке трансформатора. Дисковая обмотка
Обмотка — совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведённые в витках. В трёхфазном трансформаторе под обмоткой обычно подразумевают совокупность обмоток одного напряжения трёх фаз, соединяемых между собой.
Проводник обмотки в силовых трансформаторах обычно имеет квадратную форму для наиболее эффективного использования имеющегося пространства (для увеличения коэффициента заполнения в окне сердечника). При увеличении площади проводника проводник может быть разделён на два и более параллельных проводящих элементов с целью снижения потерь на вихревые токи в обмотке и облегчения функционирования обмотки. Проводящий элемент квадратной формы называется жилой.
Каждая жила изолируется при помощи либо бумажной обмотки, либо эмалевого лака. Две отдельно изолированных и параллельно соединённых жилы иногда могут иметь общую бумажную изоляцию. Две таких изолированных жилы в общей бумажной изоляции называются кабелем.
Особым видом проводника обмотки является непрерывно транспонированный кабель. Этот кабель состоит из жил, изолированных при помощи двух слоёв эмалевого лака, расположенных в осевом положении друг к другу.
Непрерывно транспонированный кабель получается путём перемещения внешней жилы одного слоя к следующему слою с постоянным шагом и применения общей внешней изоляции.
Бумажная обмотка кабеля выполнена из тонких (несколько десятков микрометров) бумажных полос шириной несколько сантиметров, намотанных вокруг жилы. Бумага заворачивается в несколько слоёв для получения требуемой общей толщины.
Дисковая обмотка
Обмотки разделяют по:
Назначению
Основные — обмотки трансформатора, к которым подводится энергия преобразуемого или от которых отводится энергия преобразованного переменного тока.
Регулирующие — при невысоком токе обмотки и не слишком широком диапазоне регулирования, в обмотке могут быть предусмотрены отводы для регулирования коэффициента трансформации напряжения.
Вспомогательные — обмотки, предназначенные, например, для питания сети собственных нужд с мощностью существенно меньшей, чем номинальная мощность трансформатора, для компенсации третей гармонической магнитного поля, подмагничивания магнитной системы постоянным током, и т. П
Исполнению
Рядовая обмотка — витки обмотки располагаются в осевом направлении во всей длине обмотки. Последующие витки наматываются плотно друг к другу, не оставляя промежуточного пространства.
Винтовая обмотка — винтовая обмотка может представлять собой вариант многослойной обмотки с расстояниями между каждым витком или заходом обмотки.
Дисковая обмотка — дисковая обмотка состоит из ряда дисков, соединённых последовательно. В каждом диске витки наматываются в радиальном направлении в виде спирали по направлению внутрь и наружу на соседних дисках. Фольговая обмотка — фольговые обмотки выполняются из широкого медного или алюминиевого листа толщиной от десятых долей миллиметра до нескольких миллиметров.
2. Принцип действия трансформатора
2.1 Базовые принципы действия трансформатора.
Работа трансформатора основана на двух базовых принципах:
Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.
В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.
Режим холостого хода
Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток через первичную обмотку невелик. Для трансформатора с сердечником из магнитомягкого материала (например, ферромагнитного материала, например, из трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике на вихревые токи и на гистерезис. Мощность потерь можно вычислить умножив ток холостого хода на напряжение, подаваемое на трансформатор.
Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.
Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея
Режим короткого замыкания
В режиме короткого замыкания, на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такой, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить умножив напряжение короткого замыкания на ток короткого замыкания.
Данный режим широко используется в измерительных трансформаторах тока.
Режим с нагрузкой
При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.
Схематично, процесс преобразования можно изобразить следующим образом:
Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.
2.2 Принцип работы однофазных и трехфазных трансформаторов специального назначения
Пик-трансформаторы
Пик-трансформаторы применяются для преобразования синусоидального напряжения в импульсы пикообразной формы. Такие импульсы напряжения с крутым фронтом необходимы для управления тиристорами либо другими полупроводниковыми или электронными устройствами.
Принцип работы пик-трансформатора основан на явлении магнитного насыщения ферромагнитного материала. Существует несколько конструктивных исполнений пик-трансформаторов
Для обеспечения удовлетворительных энергетических показателей пик-трансформаторов их магнитопроводы изготавливают из сплава типа пермаллой.
Импульсные трансформаторы
В электронных устройствах для согласования полных сопротивлений, изменения знака и амплитуды импульсов, а также для размножения импульсов применяют импульсные трансформаторы. Одно из основных требований, предъявляемых к импульсным трансформаторам, - минимальное искажение формы трансформируемых импульсов.
Для уменьшения паразитных емкостей и индуктивности рассеяния обмоток последние делают с небольшим числом витков. При этом малая продолжительность трансформируемых импульсов позволяет выполнять обмотки импульсных трансформаторов проводом уменьшенного поперечного сечения, не вызывая недопустимых перегревов. Это способствует уменьшению габаритных размеров и массы импульсных трансформаторов.
Умножители частоты
Трансформаторные устройства, состоящие из магнитопроводов и обмоток, можно использовать для умножения частоты переменного тока, т. е. увеличения частоты в целое число раз.
Рассмотрим принцип работы удвоителя частоты. Два замкнутых магнитопровода имеют пять обмоток. Первичную обмотку ω1 выполняют так, чтобы она охватывала сразу два магнитопровода. При включении обмотки в сеть переменного тока с синусоидальным напряжением и частотой f1 она создает в каждом магнитопроводе переменную МДС F1. Две секции вторичной обмотки ω1' и ω2", каждая из которых расположена на своем магнитопроводе, включены друг с другом последовательно согласно, так что результирующий магнитный поток, сцепленный с этими обмотками, равен сумме потоков магнитопроводов Фa + Фb. Кроме того, на каждом магнитопроводе имеется по одной обмотке подмагничивания ω0, включенных между собой последовательно. При включении этих обмоток на постоянное напряжение U0 в каждом из магнитопроводов возникает подмагничивающая МДС F0 = I0 ω0.
При включении в сеть с синусоидальным напряжением u1 и частотой f1 обмотка ω1 в течение первого полупериода напряжения u1 создает МДС F1 = I1 ω1 в магнитопроводе a, направленную согласно с МДС постоянного тока F0. При этом магнитные потоки в магнитопроводе a складываются и создают результирующий поток Фa = Ф0 + Ф1. За счет магнитного насыщения магнитопровода a график этого потока Фa = ѓ(t) имеет уплощенный вид.
В магнитопроводе b в этом же полупериоде МДС потоки Ф0 и Ф1 действуют встречно, создавая результирующий поток Фb = Ф0 – Ф1, имеющий значительный провал в середине первого полупериода.
Во втором полупериоде напряжения u1 в магнитопроводе a создается поток, равный разности Фa = Ф0 – Ф1, а в магнитопроводе b – поток, равный сумме Фb = Ф0 + Ф1. Вторичную обмотку, состоящую из двух секций (ω2 = ω2' + ω2"), охватывает суммарный магнитный поток Фa + Фb, график которого (Фa + Фb) = ѓ(t) построен путем суммирования ординат потоков Фa и Фb. Этот поток содержит постоянную составляющую Фпост, не принимающую участия в наведении вторичной ЭДС и явно выраженную переменную составляющую второй гармоники, которая наводит в секциях вторичной обмотки ЭДС E2 частотой f2 = 2 f1. Электродвижущая сила первичной обмотки E1, так же как и первичное напряжение U1, имеет частоту f1.
Для компенсации индуктивных падений напряжений во вторичную цепь удвоителя частоты включают конденсатор емкостью C, что повышает коэффициент мощности cos φ удвоителя и уменьшает наклон его внешней характеристики U2 = ѓ(I2).
Стабилизаторы напряжения
Стабилизаторы напряжения предназначены для поддержания практически неизменным напряжения на входе каких-либо устройств автоматики, чувствительных к колебаниям напряжения сети U1.
Основной показатель работы стабилизатора напряжения – коэффициент стабилизации по напряжению, показывающий, во сколько раз относительное изменение напряжения на выходе стабилизатора (ΔUст / Uст) меньше относительного изменения напряжения на его входе (ΔU / U1):
kст = (ΔU / U1): (ΔUст / Uст) (1)
где ΔU = U1 max – U1 min;
ΔUст = Uст max – Uст min.Основные виды стабилизаторов трансформаторного принципа действия: ферромагнитные стабилизаторы насыщенного типа и феррорезонансные стабилизаторы (содержащие емкость C).
Ферромагнитный стабилизатор напряжения представляет собой трехстержневой магнитопровод, на среднем стержне которого расположена первичная обмотка ω1. На правом стержне, работающем в условиях сильного магнитного насыщения, расположена вторичная обмотка ω2. На левом ненасыщенном стержне расположена компенсационная обмотка ωк. При колебаниях напряжения U1 на входе стабилизатора изменяется магнитный поток в среднем стержне, но поток в правом стержне изменяется незначительно, так как стержень насыщен. Поэтому колебания напряжения U2' на выходе вторичной обмотки стабилизатора незначительны и компенсируются напряжением Uк компенсационной обмотки, зависимость которого от напряжения U1 имеет вид прямой линии, так как левый стержень стабилизатора ненасыщен. При правильном подборе параметров обмоток и магнитопровода стабилизатора напряжение на выходе оказывается стабилизированным:
Uст = U2' – Uк (2)
Так, при колебаниях напряжения U1 в пределах ±20% от номинального значения при неизменных нагрузке и частоте выходное напряжение колеблется в пределах ±3%, т. е. коэффициент стабилизации по напряжению kст ≈ 7. Обычно для ферромагнитных стабилизаторов kст не превышает 10. Основные недостатки ферромагнитных стабилизаторов: небольшой коэффициент стабилизации по напряжению, низкий КПД (не более 40–60%), небольшой коэффициент мощности (не более 0,4), несинусоидальное выходное напряжение. Указанные недостатки ограничивают применение ферромагнитных стабилизаторов напряжения.
Феррорезонансный стабилизатор
Феррорезонансный стабилизатор напряжения обладает лучшими свойствами. Он состоит из реактора, магнитопровод которого при заданном диапазоне напряжений U1 насыщен, конденсатора C, автотрансформатора, магнитопровод которого ненасыщен. Обмотка автотрансформатора включена так, что напряжение на выходе стабилизатора
Uст = U2' – U2" (3)
где U2' – напряжение на выводах реактора; U2" – напряжение на выводах автотрансформатора.
Напряжение U2' благодаря резонансу токов в контуре L1C, где L1 – индуктивность реактора, имеет резко нелинейную зависимость от напряжения U1. Напряжение U2" пропорционально напряжению U1 и компенсирует изменение напряжения U2' на прямолинейном участке кривой. При этом условии напряжение на выходе стабилизатора Uст изменяется незначительно при заданном диапазоне колебания напряжения на входе стабилизатора. Коэффициент полезного действия феррорезонансного стабилизатора достаточно высок и составляет 80–85%, а коэффициент стабилизации по напряжению kU = 20ч40.
3. Примеры использования трансформаторов
3.1 Применение в электросетях
Наиболее часто трансформаторы применяются в электросетях и в источниках питания различных приборов.
Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Поэтому для наиболее выгодной транспортировки электроэнергии в электросети многократно применяют трансформаторы: сначала для повышения напряжения генераторов на электростанциях перед транспортировкой электроэнергии, а затем для понижения напряжения линии электропередач до приемлемого для потребителей уровня.
Поскольку в электрической сети три фазы, для преобразования напряжения применяют трёхфазные трансформаторы, или группу из трёх однофазных трансформаторов, соединённых в схему звезды или треугольника. У трёхфазного трансформатора сердечник для всех трёх фаз общий.
Несмотря на высокий КПД трансформатора (для трансформаторов большой мощности — свыше 99 %), в очень мощных трансформаторах электросетей выделяется большая мощность в виде тепла (например, для типичной мощности блока электростанции 1 ГВт на трансформаторе может выделяться мощность до нескольких мегаватт). Поэтому трансформаторы электросетей используют специальную систему охлаждения: трансформатор помещается в баке, заполненном трансформаторным маслом или специальной негорючей жидкостью. Масло циркулирует под действием конвекции или принудительно между баком и мощным радиатором. Иногда масло охлаждают водой. «Сухие» трансформаторы используют при относительно малой мощности (до 16000 кВт).
3.2 Применение в источниках электропитания
Для питания разных узлов электроприборов требуются самые разнообразные напряжения. Блоки электропитания в устройствах, которым необходимо несколько напряжений различной величины содержат трансформаторы с несколькими вторичными обмотками или содержат в схеме дополнительные трансформаторы. Например, в телевизоре с помощью трансформаторов получают напряжения от 5 вольт (для питания микросхем и транзисторов) до 30 киловольт (для питания анода кинескопа).
В прошлом в основном применялись трансформаторы, работающие с частотой электросети, то есть 50-60 Гц.
В схемах питания современных радиотехнических и электронных устройств (например в блоках питания персональных компьютеров) широко применяются высокочастотные импульсные трансформаторы. В импульсных блоках питания переменное напряжение сети сперва выпрямляют, а затем преобразуют при помощи инвертора в высокочастотные импульсы. Система управления с помощью широтно-импульсной модуляции (ШИМ) позволяет стабилизировать напряжение. После чего импульсы высокой частоты подаются на импульсный трансформатор, на выходе с которого, после выпрямления и фильтрации получают стабильное постоянное напряжение. В прошлом сетевой трансформатор (на 50-60 Гц) был одной из самых тяжёлых деталей многих приборов. Дело в том, что линейные размеры трансформатора определяются передаваемой им мощностью, причём оказывается, что линейный размер сетевого трансформатора примерно пропорционален мощности в степени 1/4. Размер трансформатора можно уменьшить, если увеличить частоту переменного тока. Поэтому современные импульсные блоки питания при одинаковой мощности значительно легче. Трансформаторы 50-60 Гц, несмотря на их недостатки, продолжают использовать в схемах питания, в случая, когда надо обеспечить минимальный уровень высокочастотных помех, например в высококачественном звуковоспроизведении.
3.3 Другие применения трансформатора
Разделительные трансформаторы (трансформаторная гальваническая развязка). Нейтральный провод электросети может иметь контакт с «землёй», поэтому при одновременном касании человеком фазового провода (а также корпуса прибора с плохой изоляцией) и заземлённого предмета тело человека замыкает электрическую цепь, что создаёт угрозу поражения электрическим током. Если же прибор включён в сеть через трансформатор, касание прибора одной рукой вполне безопасно, поскольку вторичная цепь трансформатора никакого контакта с землёй не имеет.
Импульсные трансформаторы (ИТ). Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ, заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.
Измерительные трансформаторы. Применяют для измерения очень больших или очень маленьких переменных напряжений и токов в цепях РЗиА.
Измерительный трансформатор постоянного тока. На самом деле представляет собой магнитный усилитель, при помощи постоянного тока малой мощности управляющий мощным переменным током. При использовании выпрямителя ток выхода будет постоянным и зависеть от величины входного сигнала.
Измерительно-силовые трансформаторы. Имеют широкое применение в схемах генераторов переменного тока малой и средней мощности (до мегаватта), например, в дизель-генераторах. Такой трансформатор представляет собой измерительный трансформатор тока с первичной обмоткой, включённой последовательно с нагрузкой генератора.
Со вторичной обмотки снимается переменное напряжение, которое после выпрямителя подаётся на обмотку подмагничивания ротора. (Если генератор — трёхфазный, обязательно применяется и трёхфазный трансформатор). Таким образом, достигается стабилизация выходного напряжения генератора — чем больше нагрузка, тем сильнее ток подмагничивания, и наоборот.