Основы термической обработки




ЛАБОРАТОРНАЯ РАБОТА №4,5

 

Тема: Термическая обработка стали

 

Цель работы: изучить технологию термической обработки стали (закалка, отпуск, нормализация, отжиг) и познакомиться с закономерностями изменения твердости образ-цов стали в исходном (г.к.) состоянии и после термообработки.

Оборудование и материалы: компьютер, проектор, экран, учебник Л.В. Журавлева Электроматериаловедение; слайдовая презентация; образцы материалов: сталь.

 

Порядок выполнения работы:

 

1. Изучить технологию термической обработки стали, влияние температуры на физические свойства стали.

2. Провести анализ:

- сущность термической обработки стали.

- виды термической обработки стали.

- цель закалки стальных изделий.

- отпуск стали после закалки.

- сущность отжига, нормализация стали?

3. Сделать вывод о работе.

4. Оформить отчет.

Домашнее задание: Выучить основные способы химико-термической обработки стали, их назначение и применение.

 

Раздаточный материал к лабораторной работе №4,5

по теме: «Термическая обработка стали»

 

Основы термической обработки

Термическая обработка – это технологический процесс, состоящий из нагрева стали до определенной температуры выдержка при этой температуре определенной время и охлаждения при заданной скорости с целью изменения его структуры и свойств.

На стадии изготовления деталей строительных конструкций необходимо, чтобы металл был пластичным, нетвердым, имел хорошую обрабатываемость резанием.

В готовых изделиях всегда желательно иметь материал максимально прочным, вязким, с необходимой твердостью.

Такие изменения в свойствах материала позволяет сделать термообработка. Любой процесс термообработки может быть описан графиком в координатах температура-время и включает нагрев, выдержку и охлаждение. При термообработке протекают фазовые превращения, которые определяют вид термической обработки.

Температура нагрева стали зависит от положения ее критических точек и выбирается по диаграмме состояния Fe – Fe3С в зависимости от вида термической обработки. Критические точки (температуры фазовых превращений) определяют: линия PSK – точку А1, GS – точку А3 и SE – точку Аm. Нижняя критическая точка А1 соответствует превращению А ® П при 727ОС. Верхняя критическая точка соответствует началу выделения феррита из аустенита (при охлаждении) или концу растворения феррита в аустените (при нагреве). Температура линии SE, соответствующая началу выделения вторичного цементита из ау-стенита, обозначается Аm.

Время нагрева до заданной температуры зависит, главным образом, от химического состава стали и толщины наиболее массивного сечения детали (в среднем 60 с на каждый миллиметр сечения).

Рис. 1. Печь для термической обработки

Выдержка при температуре термообработки необходима для завершения фазовых превраще-ний, происходящих в металле, выравнивания температуры по всему объему детали. Продол-жительность выдержки зависит от химического состава стали и для нелегированных сплавов оп-ределяется из расчета 60 с. на один миллиметр сечения. Скорость охлаждения зависит, главным образом, от химического состава стали, а также от твердости, которую необходимо получить.

Самыми распространенными видами термообработки сталей являются закалка и отпуск. Производятся с целью упрочнения изделий.

Виды операций термической обработки: отжиг, нормализация, закалка, отпуск.

Рис.2. Диапазон оптимальных температур нагрева при различных видах термической обработки

Рис. 3. Выбор оптимальной температуры закалки стали (а) и отпуска (б)

Закалка сталей

Закалкой называется фиксация при комнатной температуре высокотемпературного состояния сплава. Основная цель закалки – получение высокой твердости, прочности и износостойкости. Для достижения этой цели стали нагревают до температур на 30 – 50ОС выше линии GSK (рис..2), выдерживают определенное время при этой температуре и затем быстро охлаждают. Процессы, происходящие в сплаве на различных стадиях закалки, можно рассмот-реть на примере эвтектоидной стали. В исходном отожженном состоянии эта сталь имеет структуру перлита (эвтектоидная смесь феррита и цементита). При достижении темпера-туры А1 (727 0С) произойдет полиморфное превращение, т.е. перестройка кристалличе-ской решетки феррита (ОЦК) в решетку аустенита (ГЦК), вследствие чего растворимость углерода резко возрастает. В процессе выдержки весь цементит растворится в аустените и концентрация углерода в нем достигнет содержания углерода в стали, т.е. 0,8 %.

Следующий этап – охлаждение стали из аустенитной области до комнатной температуры – является определяющим при закалке. При охлаждении стали ниже температуры А1 про-исходит обратное полиморфное превращение, т.е. решетка аустенита (ГЦК) перестраива-ется в решетку феррита (ОЦК) и при этом растворимость углерода уменьшается в 40 раз (с 0,8 до 0,02). Если охлаждение происходит медленно, то “лишний” углерод успевает выйти из решетки феррита и образовать цементит. В результате формируется структура феррито-цементитной смеси. Если же охлаждение производится быстро, то после поли-морфного превращения углерод остается вследствие подавления диффузионных процес-сов в решетке ОЦК. Образуется пересыщенный твердый раствор углерода в - железе, который называется мартенситом.

Практической целью закалки является получение максимальной прочности и твердо-сти стали. Достигается эта цель при следующих режимах: нагрев стали на 30 – 50ОС выше линии GSK, выдержка при этой температуре и охлаждение со скоростью ³ Vкр.

По температуре нагрева различают полную и неполную закалку. Полная закалка осуществляется из аустенитной области. После охлаждения с критической скоростью за-калки у всех углеродистых сталей образуется структура мартенсита. Полной закалке под-вергают изделия из доэвтектоидных сталей, при этом исключается образование мягких ферритных включений. Неполная закалка – закалка из промежуточных, двухфазных областей (А + Ф), (А+ЦII). В результате охлаждения с критической скоростью в доэвтектоидных сталях об-разуется структура Ф + М, а в заэвтектоидных – М + ЦII. Неполной закалке подвергают инструмент из заэвтектоидной стали, поскольку наличие включений вторичного цементи-та увеличивает твердость закаленного инструмента, т.к. цементит по твердости превосхо-дит мартенсит

Отпуск. К важнейшим механическим свойствам сталей наряду с твердостью относится и пластичность, которая после закалки очень мала. Структура резко- неравновесная, возникают большие закалочные напряжения. Чтобы снять закалочные напряжения и получить оптимальное сочетание свойств для различных групп деталей, обычно после закалки проводят отпуск стали. Отпуском стали является термообработка, состоящая из нагрева закаленной стали до температуры ниже линии PSK (критическая точка А1), выдержки при этой температуре и дальнейшего произвольного охлаждения. Этот процесс связан с изменением строения и свойств закаленной стали. При отпуске происходит распад мартенсита, переход к более устойчивому состоянию. При этом повышается пластичность, вязкость, снижается твердость и уменьшаются остаточные напряжения встали. Механизм протекающих превращений при отпуске сталей – диффузионный, он определяется температурой и продолжительностью нагрева.

Первое превращение, протекающее в интервале 80 – 200ОС, соответствует выделению из мартенсита тонких пластин – карбида Fe2С. Выделение углерода из решетки приводит к уменьшению степени ее тетрагональности. Полученный при этом мартенсит, имеющий степень тетрагональности, близкую к 1, называется отпущенным.

При нагреве закаленной стали выше 300ОС происходит полное выделение углерода из раствора и снятие внутренних напряжений. Сталь состоит из мелкодисперсной смеси феррита и цементита (троостит отпуска).

При нагреве до температуры выше 480ОС идет процесс коагуляции (укрупнения) карбидных частиц и максимальное снятие остаточных напряжений. Формируется структура сорбита отпуска.

В зависимости от температуры нагрева различают низкий, средний и высокий отпуск. Низкий отпуск проводят в интервале температур 80 – 250ОС для инструментов-изделий, которым необходимы высокая твердость и износостойкость. Получаемая структура МОТП или МОТП + ЦII (мартенсит отпуска + цементит вторичный).

Средний отпуск (350 – 500ОС) применяется для рессор, пружин, штампов и другого ударного инструмента, т.е. для тех изделий, где требуется достаточная твердость и высокая упругость. Получаемая структура – ТОТП (троостит отпуска).

Высокий отпуск (500 – 650ОС) полностью устраняет внутренние напряжения. Достигается наилучший комплекс механических свойств: повышенная прочность, вязкость и пластичность. Применяется для изделий из конструкционных сталей, подверженных воздействию высоких напряжений. Структура – СОТП (сорбит отпуска).

Термообработку, заключающуюся в закалке на мартенсит и последующем высоком отпуске, называют улучшением.

Нормализация. Нормализацией называется нагрев сталей на 30 — 50°С выше линии доэвтектоидных, а эвтектоидной и заэвтектоидных - выше линии Am, выдержка при этой температуре и последующее охлаждение на воздухе. После нормализации изделия из доэвтектодной, заэвтектодной и эвтектодной сталей приобретают однородную структуру по сечению - пластинчатый сорбит. Сорбит представляет собой механическую смесь двух фаз феррита и цементита.

Нормализацию применяют для снижения внутренних напряжений, измельчения зерна после литья, для подготовки структуры к последующей операции термической обработки. Нагрев заэвтектоидной стали выше линии - Am при нормализации проводится с целью растворения цементитной сетки для улучшения обрабатываемости резанием и для подготовки структуры к закалке.

Отжиг сталей

Чтобы облегчить механическую или пластическую обработку стальной детали, умень-шают ее твердость путем отжига. Так называемый полный отжиг заключается в том, что деталь или заготовку нагревают до температуры 900° С, выдерживают при этой темпера-туре некоторое время, необходимое для прогрева ее по всему объему, а затем медленно (обычно вместе с печью) охлаждают до комнатной температуры.

Внутренние напряжения, возникшие в детали при механической обработке, снимают низкотемпературным отжигом, при котором деталь нагревают до температуры 500—600° С, а затем охлаждают вместе с печью. Для снятия внутренних напряжений и некото-рого уменьшения твердости стали применяют неполный отжиг — нагрев до 750—760° С и последующее медленное (также вместе с печью) охлаждение.

Разновидностью отжига стали является гомогенизация – создание однородной (гомо-генной) структуры в сплавах путем ликвидации микронеоднородностей структуры спла-ва, возникающих при неравновесной кристаллизации расплава. При гомогенизации спла-вы подвергаются т.н. диффузионному или гомонизирующему отжигу, что повышает пла-стичность и стабильность механических свойств сплава.

При гомогенизации сталь нагревается до температуры 1000 – 1100ОС выдерживается при этой температуре для полного равномерного прогрева всего сечения образца и мед-ленно охлаждается вместе с печью.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-11-18 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: