Глава II. Неорганические соединения углерода




 

Углерод образует два оксида – оксид углерода (II) СО и оксид углерода (IV) СO2.

Оксид углерода (II) СО – бесцветный, не имеющий запаха газ, малорастворимый в воде. Его называют угарным газом, так как он очень ядовит. Попадая при дыхании в кровь, быстро соединяется с гемоглобином, образуя прочное соединение карбоксигемоглобин, лишая тем самым возможности гемоглобин переносить кислород.

При вдыхании воздуха, содержащего 0,1% СО, человек может внезапно потерять сознание и умереть. Угарный газ образуется при неполном сгорании топлива, вот почему так опасно преждевременное закрывание дымоходов.

Оксид углерода (II) относят, как вы уже знаете, к несолеобразующим оксидам, так как, будучи оксидом неметалла, он должен реагировать со щелочами и основными оксидами с образованием соли и воды, однако этого не наблюдается.

2СО + О2 = 2СО2.

Оксид углерода (II) способен отнимать кислород у оксидов металлов, т.е. восстанавливать металлы из их оксидов.

Fe2О3 + ЗСО = 2Fe + ЗСО2.

Именно это свойство оксида углерода (II) используют в металлургии при выплавке чугуна.

Оксид углерода (IV) СО2 – широко известный под названием углекислый газ – бесцветный, не имеющий запаха газ. Он примерно в полтора раза тяжелее воздуха. При обычных условиях в 1 объеме воды растворяется 1 объем углекислого газа.

При давлении примерно 60 атм углекислый газ превращается в бесцветную жидкость. При испарении жидкого углекислого газа часть его превращается в твердую снегообразную массу, которую в промышленности прессуют, – это известный вам «сухой лед», который применяют для хранения пищевых продуктов. Вы уже знаете, что твердый углекислый газ имеет молекулярную решетку, способен к возгонке.

Углекислый газ СО2 – это типичный кислотный оксид: взаимодействует со щелочами (например, вызывает помутнение известковой воды), с основными оксидами и водой.

Он не горит и не поддерживает горения и потому применяется для тушения пожаров. Однако магний продолжает гореть в углекислом газе с образованием оксида и выделением углерода в виде сажи.

СО2 + 2Mg = 2MgO + С.

Углекислый газ получают, действуя на соли угольной кислоты – карбонаты растворами соляной, азотной и даже уксусной кислот. В лаборатории углекислый газ получают при действии на мел или мрамор соляной кислоты.

СаСО3 + 2НСl = СаСl2 + Н20 + С02↑.

В промышленности углекислый газ получают обжигом известняка:

СаСО3 = СаО + С02↑.

Углекислый газ, кроме уже названной области применения, используют также для изготовления шипучих напитков и для получения соды.

При растворении оксида углерода (IV) в воде образуется угольная кислота Н2СО3, которая очень нестойкая и легко разлагается на исходные компоненты – углекислый газ и воду.

Как двухосновная кислота, угольная кислота образует два ряда солей: средние — карбонаты, например СаСО3, и кислые — гидрокарбонаты, например Са(НСО3)2. Из карбонатов в воде растворимы только соли калия, натрия и аммония. Кислые соли, как правило, растворимы в воде.

При избытке углекислого газа в присутствии воды карбонаты могут превращаться в гидрокарбонаты. Так, если через известковую воду пропускать углекислый газ, то она сначала помутнеет из-за выпавшего в осадок нерастворимого в воде карбоната кальция, однако при дальнейшем пропускании углекислого газа помутнение исчезает в результате образования растворимого гидрокарбоната кальция:

СаСO3 + Н2O + СO2 = Са(НСO3)2.

Именно наличием этой соли и объясняется временная жесткость воды. Почему временная? Потому, что при нагревании растворимый гидрокарбонат кальция снова превращается в нерастворимый карбонат:

Са(НСO3)2 = СаСO3↓ + Н20 + С02↑.

Эта реакция приводит к образованию накипи на стенках котлов, труб парового отопления и домашних чайников, а в природе в результате этой реакции формируются в пещерах свисающие вниз причудливые сталактиты, навстречу которым снизу вырастают сталагмиты.

Другие соли кальция и магния, в частности хлориды и сульфаты, придают воде постоянную жесткость. Кипячением постоянную жесткость воды устранить нельзя. Приходится использовать другой карбонат – соду.

Na23, которая переводит эти ионы Са2+ в осадок, например:

СаСl2 + Na2CO3 = CaCO3↓ + 2NaCl.

Соду можно использовать и для устранения временной жесткости воды.

Карбонаты и гидрокарбонаты можно обнаружить с помощью растворов кислот: при действии на них кислот наблюдается характерное «вскипание» из-за выделяющегося углекислого газа.

Эта реакция является качественной реакцией на соли угольной кислоты.


Заключение

 

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы (узкой оболочки Земли, где существует жизнь) в другую. На примере круговорота углерода в природе можно проследить в динамике картину жизни на нашей планете.

Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода, то есть углекислого газа (CO2). Рассмотрим сначала молекулы углекислого газа, находящиеся в атмосфере. Растения поглощают эти молекулы, затем в процессе фотосинтеза атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов:

1. Углерод может оставаться в растениях, пока растения не погибнут. Тогда их молекулы пойдут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений), таким как грибы и термиты. В конце концов углерод вернется в атмосферу в качестве CO2;

2. Растения могут быть съедены травоядными животными. В этом случае углерод либо вернется в атмосферу (в процессе дыхания животных и при их разложении после смерти), либо травоядные животные будут съедены плотоядными (и тогда углерод опять же вернется в атмосферу теми же путями);

3. растения могут погибнуть и оказаться под землей. Тогда в конечном итоге они превратятся в ископаемое топливо – например, в уголь.

В случае же растворения исходной молекулы CO2 в морской воде также возможно несколько вариантов:

ü углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно);

ü углерод может войти в ткани морских растений или животных. Тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк или из отложений вновь перейдет в морскую воду.

Если углерод вошел в состав осадочных отложений или ископаемого топлива, он изымается из атмосферы. На протяжении существования Земли изъятый таким образом углерод замещался углекислым газом, попадавшим в атмосферу при вулканических извержениях и других геотермальных процессах. В современных условиях к этим природным факторам добавляются также выбросы при сжигании человеком ископаемого топлива. В связи с влиянием CO2 на парниковый эффект исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы.

Составной частью этих поисков является установление количества CO2, находящегося в тканях растений (например, в только что посаженном лесу) – ученые называют это стоком углерода. Поскольку правительства разных стран пытаются достичь международного соглашения по ограничению выбросов CO2, вопрос сбалансированного соотношения стоков и выбросов углерода в отдельных государствах стал главным яблоком раздора для промышленных стран. Однако ученые сомневаются, что накопление углекислого газа в атмосфере можно остановить одними лесопосадками.

Углерод постоянно циркулирует в земной биосфере по замкнутым взаимосвязанным путям. В настоящее время к природным процессам добавляются последствия сжигания ископаемого топлива.


Литература:

 

1. Ахметов Н.С. Химия 9 класс: учеб. для общеобразоват. учеб. заведений. – 2-е изд. – М.: Просвещение, 1999. – 175 с.: ил.

2. Габриелян О.С. Химия 9 класс: учеб. для общеобразоват. учеб. заведений. – 4-е изд. – М.: Дрофа, 2001. – 224 с.: ил.

3. Габриелян О.С. Химия 8-9 классы: метод. пособие. – 4-е изд. – М.: Дрофа, 2001. – 128 с.

4. Ерошин Д.П., Шишкин Е.А. Методика решения задач по химии: учеб. пособие. – М.: Просвещение, 1989. – 176 с.: ил.

5. Кременчугская М. Химия: Справочник школьника. – М.: Филол. общ-во «СЛОВО»: ООО «Изд-во АСТ», 2001. – 478 с.

6. Крицман В.А. Книга для чтения по неорганической химии. – М.: Просвещение, 1986. – 273 с.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: