Кожухотрубный теплообменный аппарат с U-образными трубками конструкции Гипронефтемаша




1,7-днище; 2-патрубки для подвода и отвода теплоносителя; 3-перегородка; 4-фланец; 5-трубный пучок; 6-корпус; 8-патрубки для подвода и отвода мазута; 9-опора; 10-трубная доска.

Для подогрева небольших количеств жидкого топлива нашли достаточно широкое применение подогреватели типа «труба в трубе».

 

 

4.Секционный подогреватель топлива типа ПТС:

1-опора подвижная; 2-опора неподвижная; 3-клапан выхода топлива; 4-паровой клапан; 5-клапан выхода конденсата; б-клапан входа топлива;7-трубка нагревательная; 8-корпус подогревателя; 9-фланец корпуса; 10-болт;11-крышка; 12-изоляция;13-ребра нагревательной трубки; А и Б-вход и выход топлива; В-вход пара; Г-выход конденсата.

Принцип работы подогревателя мазута заключается в следующем. Топливо из магистрали через запорный клапан поступает в межтрубное пространство (между корпусом и нагревательной трубкой), омывает наружную поверхность и ребра нагревательной трубки, нагревается и через крышку переходит в другую секцию или через клапан на выход. Греющий пар из паропровода через паровой клапан 4 попадает в нагревательную трубку; через стенку трубки подогревателя и ребра теплота пара передается топливу, далее пар конденсируется и в виде конденсата через клапан 5 удаляется из подогревателя в систему подготовки питательной воды.

 

В процессе длительной эксплуатации на ряде предприятий выявлены серьезные недостатки в работе данных подогревателей, к которым следует отнести:

· невозможность использования данных подогревателей на высоковязких мазутах с УВ° >100 с температурой подогрева до 120-135 °С;

· повышенную скорость отложений на внутренней поверхности труб со снижением тепловой мощности (коэффициент теплопередачи снижается по оценкам ЦКТИ до 70%);

· трудности, связанные с очисткой внутренней поверхности труб от отложений окисленных продуктов полимеризации мазута при температурах пара на стенке свыше 120 °С;

· относительно низкие скорости движения мазута (0,2-0,5 м/с);

· низкая гидравлическая плотность (как по пару, так и по мазуту) не позволяет повторно использовать конденсат греющего пара в технологической схеме котельной, который после охлаждения сбрасывается через очистные сооружения в канализацию;

· обводнение мазута за счет возможного попадания пара или конденсата в топливо в случаях появления свищей в трубной системе подогревателей.

Для подачи мазута к котлам применяют три схемы: циркуляционную (при использовании высоковязких мазутов, когда котельная работает постоянно на мазуте и кратковременно на газе); тупиковую (при сжигании маловязких мазутов, когда котельная работает на стабильных нагрузках, превышающих средние); комбинированную (при работе котельной на переменных нагрузках и частых переходах с газового топлива на мазут). Регулирование подачи мазута (давления) осуществляется с помощью клапана с импульсом по производительности котлов или давлению пара в котле. При циркуляционной схеме мазут отбирается в нижней части резервуара, насосомперекачивается через выносной подогреватель в котельную, а затем в резервуар. При этом улучшается разогрев мазута и уменьшается отложение примесей в резервуаре. Для перекачки мазута применяют поршневые и винтовые насосы. Мазутопроводы от хранилищ до котельной и рециркуляционныймазутопровод прокладывают в траншеях или туннелях совместно с паропроводами и покрывают их общей изоляцией. Паропроводы должны иметь надежный отвод конденсата. Чтобы обеспечить давление мазута перед форсункой около 20 кгс/см2, применяют специальные насосы (шестеренные, лопаточные, винтовые, плунжерные).

Проблемы подготовки мазута к сжиганию

По существующей традиционной технологии подготовки к сжиганию и транспортировке температура мазута в резервуарах находится в пределах 80-95 °С и поддерживается за счет местного подогрева паровыми подогревателями, расположенными на днище мазутной емкости. Затем, при помощи рециркуляционного разогрева выносными подогревателями, разогретый мазут, с необходимой вязкостью, подается в котельную к котлам. Остатки мазута поступают по рециркуляционной линии обратно в мазутные емкости. Растекание в резервуаре турбулентных затопленных струй и сопутствующие им вихревые токи обеспечивают перемешивание мазута в резервуарах и равномерное распределение температур в объеме резервуаров. В то же время, за счет многократного прокачивания мазута, получается грубая водотопливная смесь (эмульсия), качество которой не соответствует требованиям по условиям горения. Низкое качество топливной смеси приводит к пульсирующему горению мазута в топке котлов. С другой стороны, используемая технология подготовки находящегося на хранении в резервуарах мазута с переменным влагосодержанием не позволяет в должной мере обеспечить качественный процесс отстаивания и удаления воды из мазута до влагосодержания, обеспечивающего условия экономичной и экологичной работы котлов. Другой проблемой, существенно влияющей на экономическую эффективность работы котельной, является то, что в существующих схемах мазутного хозяйства котельных отработанный конденсат пара из мазутоподогревателей выносных и находящихся в емкостях после охлаждения водой городского водопровода до требуемой температуры (40 °С) сбрасывается в систему производственно - дождевой канализации и после очистки в городской коллектор. Применяемые сейчас методы очистки сточных вод от нефтепродуктов являются дорогостоящими и не всегда эффективными. Особенно это относится к очистке сильно загрязненных нефтепродуктами вод, которые могут появиться при разрывах или свищах в мазутных подогревателях. Поэтому возврат загрязненного нефтепродуктами конденсата в питательный контур паровых котлов может привести к выходу их из рабочего состояния. Потеря конденсата от подогревателей мазута приводит к необходимости дополнения подпиточнойхимочищенной водой котлового контура и дополнительного топлива.

Сжигание мазута.

Современные методы промышленного сжигания мазута в топках котлов основаны на факельном сжигании мелкораспыленного топлива при обязательном условии предварительного его нагрева и принудительного распыливания при помощи форсунок. Для распыления мазута в отопительных котлах чаще всего используются форсунки с механическим или паровым распыливанием, а также с комбинированным паромеханическим распылом. Механические форсунки требуют высокого давления и даже при этих условиях не могут обеспечить широкий диапазон регулирования нагрузки. Форсунки с паровым распылом требуют расход пара, что трудно осуществить в котельной с водогрейными котлами. В последние годы на российском рынке появились ротационные форсунки, лишенные таких недостатков, как сложность конструкции и шум в работе. Одним из таких образцов являются форсунки фирмы «ЗААКЕ» (г. Бремен, Германия). Они могут сжигать любое жидкое котельное топливо, в том числе мазуты марок 40 и 100, остатки тяжелых минеральных масел, гудрон и т.д. Они не требуют тщательной фильтрации мазута. Однако все вышеперечисленные форсунки не обеспечивают устойчивость пламени при сжигании сильно обводненного мазута, полноту сгорания грубодисперсных фракций, которые скапливаются в донных отложениях при длительном хранении мазута. Решить эти проблемы путем совершенствования конструкции форсунок не представляется возможным.

Существенным недостатком работы котлов на мазуте является загрязнение поверхностей нагрева котла, что вызывает ухудшение условий теплопередачи по сравнению с работой на газе. Несколько выше и коэффициент избытка воздуха, что приводит к снижению КПД котла. В котельных, где мазут является резервным (аварийным) топливом, наибольшее распространение получили короткофакельные горелки ГМГМ. Мазут подается к распыливающей головке, в которой установлены: шайба распределительная с одним рядом отверстий, завихрители топливный и паровой, имеющие по три тангенциальных канала. Шайба и завихрители крепятся с помощью накидной гайки. Количество и диаметр отверстий в шайбе распределительной следующие: в горелках ГМГ-1,5М и ГМГ-2М— 8 диаметром 2,5, в горелках ГМГ-4М и ГМГ-5М — 12 диаметром 3 мм. Мазут проходит через отверстия шайбы, по каналам попадает в камеру завихрителя и выходит из сопла, распыливаясь за счет центробежной силы. Если требуемая тепловая мощность находится в пределах 70—100% от номинальной, можно работать без подачи пара, так как достаточно механического распыливания мазута. При тепловой мощности ниже 70% от номинальной подается пар давлением 1,5—2 кгс/см2, который проходит через каналы парового завихрителя и закрученным потоком участвует в распыливании мазута.

При сжигании мазута необходимо следить за тем, чтобы на внутренних поверхностях форсунок не накапливались нагарообразования, смолистые и другие отложения, ухудшающие условия распыливания мазута, что вызывает неполноту его сгорания. О наличии таких отложений можно судить по появлению в топке летающих капель — «звездочек». Поэтому форсунки следует периодически вынимать из горелок, очищать их от отложений и промывать соляровым маслом или другим легким топливом.

Устройства и способы для сжигания и очистки мазута.

Наряду с организационно-финансовыми причинами неудовлетворительного состояния систем теплоснабжения, имеют место серьезные причины технического характера. В настоящее время неизвестен соответствующий современным требованиям рациональный и экономически обоснованный способ высококачественного распыла мазута без распыливающего агента. Нормативные документы, регламентирующие режимы эксплуатации ТЭС разработаны десятки лет назад, в период относительно дешёвого топлива. Вероятно, низкая экономичность оборудования для сжигания мазута (механических форсунок) и энергорасточительность существующей технологии сжигания мазута объясняется временем разработки. В настоящее время, по некоторым данным, отраслевые НИИ не ведут работы в этом направлении. При нарастающем дефиците газа, с ростом доли мазута в общем балансе топлива, с ростом стоимости мазута, необходимо совершенствование технологии его сжигания и внедрение новейших разработок. Сжигание мазута с условным отсутствием химического недожога, потери тепла на испарение влаги обводненного топлива и т.п. не могут быть оправданы при сегодняшних взглядах на энергосбережение и на экономию энергоресурсов.

 

Следует подчеркнуть, что предлагаемый способ распыла мазута с использованием кавитационных эффектов является новым в теории проектирования и в практике эксплуатации ТЭС, не имеющий, по некоторым данным, аналогов в России.

 

Форсунка предназначена для высококачественного механического распыла и сжигания мазута в энергетических котлах и установках. Кавитационная форсунка является современной техникой, не имеющей аналогов в России. Отличительными особенностями данной разработки по сравнению с традиционными механическими форсунками являются её высокая экономичность, надежность и простота в обслуживании.

 

Высокая надежность достигается благодаря простоте конструкции и применению материалов, рассчитанных на многолетнюю длительную эксплуатацию. Все обслуживание форсунки заключается только в периодическом контроле за состоянием деталей. Поэтому применение «Фрезы» позволит потребителю одновременно решить две проблемы – энергосбережения и ресурса.

 

Принцип работы кавитационной форсунки.

 

Форсунка состоит из корпуса, сопла, завихрителя и основания. Основным элементом форсунки Фреза является кавитатор, который представляет собой цилиндрический корпус, оснащенный профилированными каналами специальной зависимости.

При прокачивании под давлением мазута через кавитатор в нем формируется вихревой поток, в котором под действием переменных давлений в местах неоднородностей топлива возникают ее разрывы, что приводит к появлению мельчайших пузырьков. При последующем схлопывании пузырьков происходят резкие скачки давления (абсолютная величина давления зависит от сил поверхностного натяжения жидкости и других факторов), образуются поперечные составляющие скорости потока, существенные сдвиговые напряжения потока и значительное локальное повышение температуры. Непрерывное образование и схлопывание пузырьков в жидкости, известное как явление кавитации, приводит к разрыву мазутных цепочек (кластеров), генерации высокочастотных колебаний и неустойчивости топливной плёнки перед сопловым отверстием. Вязкость топлива, за счёт разрыва цепочек молекул и местных повышений температуры резко снижается, а вода, содержащаяся в топливе, под воздействием кавитации частично подвергается диссоциации на водород (идеальное горючее) и кислород, а частично образует с топливом водомазутную эмульсию. При выходе из соплового отверстия, неустойчивая пульсирующая газоводомазутная плёнка мгновенно разваливается на мельчайшие капельки, внутри которых находится мельчайшая частица воды, водород или кислород. Вылетая в область низких давлений газ расширяется взрывом, а вода мгновенно прогревается и взрывается, что и приводит к вторичному мелкодисперсному дроблению мазута до уровня 40…60 мкм. Наилучшие результаты достигаются при дисперсности водяных частиц от 3 до 8 мкм. Горение мазута и водорода в присутствии паров воды и активного кислорода проходит при предельно низких избытках воздуха, без гарантированного недожога топлива с полнотой сгорания близкой к единице, что и приводит к экономии топлива при сжигании. Снижение удельного расхода мазута теоретически может достигать 2,5… 3,0 % и более, а это сотни миллионов рублей.

 

Сегодня, когда во всех государствах мира энергосбережение введено в ранг государственной политики, необходимо всемерное совершенствование технологии сжигания мазута на ТЭС и котельных, необходима модернизация и совершенствование действующего оборудования.

 

Учитывая компактность, надёжность и простоту конструкции, кавитационные форсунки механического распыливания мазута в горелках котлоагрегатов по совокупности экономических и эксплуатационных параметров превосходят любые другие известные устройства и способы сжигания топлива.

 

Применение форсунок «Фреза» позволит:

 

1. Снизить удельный расход мазута на 0,5…1,0% и до 1,5% на малых нагрузках в сравнении с механическими форсунками ГРФМ.

2. Обеспечит диапазон регулирования нагрузки котла от 50 до 100%.

3. Снизить избытки воздуха в топке;

4. Снизить занос поверхностей нагрева котла;

5. Повысить К.П.Д. котла;

6. Повысить надёжность и безопасность эксплуатации котлоагрегата при сжигании низкосортного мазута.

 

ТЕРРА М

Установка предназначена для выделения из мазутов воды и мехпримесей. Данный процесс происходит за счет разделения смеси на 3 фазы на основе их разности плотностей с применением различных диапазонов высоких скоростей и вращающих моментов. Сырье (загрязненный продукт) подается через трубу механизма подачи во вращающуюся часть шнекового конвейера, где под действием центробежной силы происходит разделение на очищенный продукт и осадок. Очищенный мазут выводится из цилиндрической части ротора, а осадок за счет разницы скоростей шнека и ротора поступает в коническую часть, где происходит его обезвоживание. Обезвоженный осадок выгружается в узком конце конической части через специальные порты и с помощью транспортера может выгружаться напрямую в самосвалы или контейнеры для отходов. Управление декантером и насосом осуществляется со встроенного пульта управления. Центрифуга и насос имеют взрывозащищенное исполнение. Остаток воды в очищенном мазуте — не более 1,5%. Остаток мехпримесей — не более 1%. Установка смонтирована на прочной металлической раме.

Применяемые сегодня в котельных технико-технологические и организационно - технические мероприятия по хранению и использованию поставляемого низкосортного жидкого топлива не только не обеспечивают уровень современных требований по экономическим и экологическим показателям, но и усугубляют их за счет:

· повышенного образования шлама с резким увеличением термического сопротивления на поверхностях нагрева;

· повышенной коксуемости мазута;

· снижения качества его распыливания;

· ухудшения функционирования горелочных устройств;

· снижения качества процесса горения топлива в топках котлов;

· снижения надежности, маневренности производительности котельного агрегата и уменьшения его межремонтного ресурса в целом;

· значительных потерь топлива, электроэнергии и воды.

 

Совершенствование эксплуатации мазутного хозяйства в новых экономических условиях требует комплексного подхода по внедрению нового оборудования и технологий хранения, подготовки к сжиганию мазута и его учета.

Это достигается за счет применения таких технологий, которые бы обеспечивали требуемый уровень нагрева, фильтрации, гомогенизации, давления и постоянства качества подаваемого на горение мазута, а также приборного контроля расхода и приема топлива с минимальными эксплуатационными затратами. К таким технологиям следует отнести:

· «холодное» хранение мазута с выделением прогретой зоны в объеме резервуара по линии всасывания;

· многоступенчатую подготовку мазута с получением высококачественной топливной (водотопливной) смеси (эмульсии) путем диспергирования топлива содержащейся в ней водой (или нефтесодержащими водами) и топливными составляющими;

· циркуляционный подогрев мазута с повышенными скоростями в выносных подогревателях - гомогенизаторах, многократную фильтрацию на фильтрах - подогревателях;

· технологию замкнутой схемы нагрева мазута с возвратом конденсата в цикл котельной.

 

Необходимо разработать аппаратно - программный комплекс измерительных устройств, позволяющих с учетом динамики изменения свойств поступающего и расходуемого мазута определять автоматически его массу.

В энергетической стратегии развития России до 2020 г. предусматривается не только рост объемов добычи нефти, но и одновременное увеличение глубины ее переработки, что приведет к ухудшению качества мазута.

 

ЛИТЕРАТУРА

1. Нормы технологиечского проектирования тепловых электростанций и тепловых сетей. – М.: Минтопэнерго, 1981.

2. Правила технической эксплуатации электростанций и сетей. – М.: Энергоатомиздат, 1998.

3. Выбор оборудования тепловых электрических схем и их расчет. Часть первая: Методические указания к дипломному проектированию – Иваново: ВЗЭТ, 1985.

4. Выбор вспомогательного оборудования котельного отделения ТЭС. Часть вторая: Методические указания к дипломному проектированию. – Иваново: ВЗЭТ, 1987.

5. Григорьев В.А. Тепловые и атомные электрические станции [Текст]:Учебное пособие для ВУЗов / В.А. Григорьев, В.М. Зорин. - М.: Энергоатомиздат, 1982.

6. Григорьев В.А. Тепловые и атомные электрические станции [Текст]:Учебное пособие для ВУЗов / В.А. Григорьев, В.М. Зорин. - 2-е изд., перераб. - М.: Энергоатомиздат, 1989. - 608 с.

7. Клименко В.А. Тепловые и атомные электростанции [Текст]: справочник / В.А. Клименко, В.М. Зорин. - 3-е изд., перераб. и доп. — М.: Издательство МЭИ, 2003. — 648 с.

8. Леонков А.М. Тепловые электрические станции [Текст]: дипломное проектирование / А. М. Леонков, Б. В. Яковлев; ред. А. М. Леонков. - Минск:Вышэйшая школа, 1978. - 231 с.

9. Смирнов А.Д. Справочная книжка энергетика [Текст] / А.Д. Смирнов, К.М. Антипов. - 4-е изд., перераб. и доп. — М.: Энергоатомиздат, 1984. — 440 с.

10. Жабо В.В. Гидравлика и насосы [Текст] /В.В. Жабо, В.В. Уваров.- Учебник для техникумов. — 2-е изд. перераб. — М.: Энергоатомиздат, 1984. — 328 с.

11. Выбор вспомогательного оборудования котельного отделения ТЭС. Часть 2. Методические указания к дипломному проектированию. – Иваново: ВЗЭТ, 1985.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: