Количество крови в организме, относительное постоянство.




Функции крови. Состав.

Кровь, лимфа, тканевая жидкость являются внутренней средой организма, в которой протекают многие процессы гомеостаза. Кровь является жидкой тканью и вместе с кроветворными и депонирующими органами (костным мозгом, лимфоузлами, селезенкой) образует физиологическую систему крови. В организме взрослого человека около 4-6 литров крови, что составляет 6-8% от массы тела. Основными функциями системы крови являются:

1. Транспортная, она включает:

a. дыхательную – транспорт дыхательных газов О2 и СО2 от легких к тканям и наоборот;

b. трофическую – перенос питательных веществ, витаминов, микроэлементов;

c. выделительную – транспорт продуктов обмена к органам выделения;

d. терморегуляторную – удаление избытка тепла от внутренних органов и мозга к коже;

e. регуляторную – перенос гормонов и других веществ, входящих в гуморальную систему регуляции организма.

2. Гомеостатическая. Кровь обеспечивает следующие процессы гомеостаза:

a) поддержание рН внутренней среды организма;

b) сохранение постоянства ионного и водно-солевого баланса, а как следствие осмотического давления.

3. Защитная функция. Обеспечивается содержащимися в крови имунными антителами, неспецифическими противовирусными и антибактериальными веществами, фагоцитарной активностью лейкоцитов.

4. Гемостатическая функция. В крови имеется ферментная система свертывания, препятствующая кровотечению.

Объем и состав крови

Общий объем крови — примерно 7% (6—8%, у детей 8—9%) от веса тела.

Кровь состоит из форменных элементов и плазмы. Отношение объема форменных элементов к общему объему крови называется числом гематокрита, или просто гематокритом, и составляет 40—45%.

·Форменные элементы подразделяются на:

· эритроциты, главная функция которых — перенос дыхательных газов (O2 и CO2);

· лейкоциты, главная функция которых — защитная (иммунная);

· тромбоциты, главная функция которых — участие в остановке кровотечения.

В свою очередь, лейкоциты подразделяются на:

· гранулоциты, которые в зависимости от сродства содержащихся в них гранул к

· кислым или щелочным красителям делятся на:

· нейтрофилы;

· базофилы;

· эозинофилы;

· агранулоциты, к которым относятся:

· лимфоциты;

· моноциты.

Плазма крови на 90—92% состоит из воды. Основные компоненты сухого остатка:

· белки (7—8% от общего объема плазмы);

· электролиты (0,8% от общего объема плазмы; подавляющая часть приходится на долю NaCl);

· на долю всех остальных компонентов (глюкозы, мочевины, липидов и пр.) приходится < 1%.

Белки плазмы

Плазма, из которой удален фибриноген, называется сывороткой крови.

Состав крови. Основные физиологические константы крови

Кровь состоит из плазмы и взвешенных в ней форменных элементов – эритроцитов, лейкоцитов и тромбоцитов. Соотношение объема форменных элементов и плазмы называется гематокритом. В норме форменные элементы занимают 42-45% объема крови, а плазма – 55-58%. У мужчин объем форменных элементов на 2-3% больше, чем у женщин. Гематокрит определяют путем центрифугирования крови, содержащей цитрат натрия, в капиллярах со 100 делениями. Удельный вес цельной крови 1,052-1,061 г/см3. Ее вязкость равна 4,4-4,7 пуаз, а осмотическое давление 7,6 атм. Большая часть осмотического давления обусловлена находящимися в плазме катионами натрия и калия, а также анионами хлора. Растворы, осмотическое давление которых выше осмотического давления крови, называют гипертоническими. Это, например, 10% раствор хлорида натрия или 40% глюкозы. Если осмотическое давление раствора ниже, чем крови он называется гипотоническим (0,3% NaCl). В клинике, для переливания больших количеств кровезамещающих растворов, используют изотонические растворы. Их осмотическое давление такое же как у крови. Таким является физиологический раствор, содержащий 0,85% хлорида натрия. Белки крови, являясь коллоидами, также создают небольшое давление, называемое онкотическим. Его величина 0,03 атм. или 25-30 мм рт.ст.

Внутренняя среда

Все биохимические системы наших клеток приспособлены к работе в строго определенных условиях (температура, pH, содержание кислорода и питательных веществ и т. п.). В то же время условия окружающей среды постоянно и порой резко меняются — организм подвергается значительным перепадам температуры, в течение долгого времени могут не поступать вода и питательные вещества и т. д. Для того чтобы все эти колебания не повлияли на работу биохимических систем, выработался универсальный механизм адаптации: клетки окружены жидкостью, состав которой поддерживается на постоянном уровне. Итак, если организм существует во внешней среде, подверженной значительным колебаниям, то все его клетки существуют в относительно постоянной внутренней среде, главной составной частью которой служит межклеточная жидкость. Однако поддерживать постоянство непосредственно межклеточной жидкости невозможно — регуляторные системы не могут воспринимать и поддерживать состав среды, окружающей каждую клетку. В связи с этим выработался другой механизм: организм поддерживает постоянство состава крови (воспринимая его с помощью расположенных в сосудах рецепторов), а кровь свободно обменивается со всеми межклеточными жидкостями. Итак, главные составные части внутренней среды — это кровь и межклеточная жидкость. Кроме того, к внутренней среде относятся еще некоторые жидкости — лимфа, спинномозговая жидкость и другие. Некоторые показатели внутренней среды должны поддерживаться в особенно узких пределах. Это так называемые константы внутренней среды. К ним относятся pH, температура, осмотическое давление, электролитный состав, содержание глюкозы, кислорода и углекислого газа и др. Главным центром, поддерживающим постоянство внутренней среды, является гипоталамус.

Количество крови в организме, относительное постоянство.

Относительное постоянство химического состава и физико-химических свойств внутренней среды организма называют гомеостазом. Он характеризуется множеством количественных показателей (параметров), получивших название физиологических (биологических) констант. Константы обеспечивают оптимальные условия жизнедеятельности клеток организма и отражают его нормальное состояние. Под влиянием внешних воздействий и сдвигов, происходящих в самом организме (физическая нагрузка, прием пищи и т.д.), состав и свойства внутренней среды на короткое время могут изменяться, но благодаря нервной и гуморальной регуляции сравнительно быстро возвращаются к исходному состоянию. Такое динамическое постоянство внутренней среды правильнее называть гомеокинезом.

Общее количество кpови в оpганизме взpослого человека составляет 6-8 % от массы тела (пpи массе 70 кг – это 5-6 л), из котоpой около половины циpкулиpует, а остальная часть находится в депо (в печени – 20 %, в селезёнке – до 16 %, в кожных сосудах – до 10 %)‏

Гематокрит — это соотношение объёмов плазмы крови и форменных элементов.

1. Соотношение определяется путём центрифугирования крови в специальном капилляре с делениями — гематокрите. В нормальных условиях это соотношение составляет 45 % форменных элементов и 55 % плазмы.

Константы крови. Кровь как жидкая ткань организма характеризуется множеством констант, которые можно разделить на мягкие и жесткие.

Мягкие (пластичные) константы крови могут отклоняться (изменять свою величину) от константного уровня в относительно широких пределах без существенных изменений жизнедеятельности клеток и, следовательно, функций организма. К ним относятся:

1. Количество крови, циркулирующей по сосудам. Общее количество крови в организме составляет 4-6 л (70 мл/кг, ~7% массы тела), из них в состоянии покоя циркулирует около половины, другая половина (45-50 %) находится в депо (в печени до 20%, в селезенке до 16%, в кожных сосудах до 10%).

2. Соотношение объемов плазмы крови и форменных элементов. Плазма - это жидкая часть крови, лишенная форменных элементов. Соотношение объемов плазмы и форменных элементов гематокрит - в нормальных условиях составляет 45% форменных элементов и 55% плазмы для мужчин и 40% форменных элементов и 60% плазмы - для женщин.

3. Содержание форменных элементов крови. Эритроцитов у мужчин 4,0-5,0*1012 /л, у женщин 3,9-4,7* 10'2 /л; лейкоцитов 4,0-9,0*10" /л; тромбоцитов 180-320*109/л.

4. Количество гемоглобина. У мужчин - 130-160 г/л, у женщин - 120-140 г/л.

5. Скорость оседания эритроцитов (СОЭ): у мужчин - 2-10 мм/ч, у женщин - 2-15 мм/ч. Скорость оседания эритроцитов зависит от многих факторов: количества эритроцитов, их морфологических особенностей, величины заряда, способности к агломерации (агрегации), белкового состава плазмы. На скорость оседания эритроцитов влияет физиологическое состояние организма. Например, при эмоциональном и физическом напряжении, воспалительных процессах скорость оседания эритроцитов увеличивается.

6. Вязкость крови обусловлена наличием белков и эритроцитов. Вязкость Цельной крови равна 5,0 (если вязкость воды принять за 1), плазмы - 1,7-2,2.

7. Удельный вес (относительная плотность) крови зависит от содержания форменных элементов, белков и липидов. Удельный вес цельной крови равен 1,050-1,060, плазмы - 1,025-1,034.

Жесткие константы крови. Их колебание допустимо в очень небольших диапазонах, т. к. отклонение на значительные величины приводит к нарушению жизнедеятельности клеток или функций целого организма. К жестким

константам относятся:

1. Ионный состав крови. Общее количество неорганических веществ плазмы крови составляет около 0,9%. К этим веществам относятся: катионы (натрия, калия, кальция, магния) и анионы (хлора, НР042", ПСО,'), причем, катионный состав является более жесткой величиной, чем анионный.

2. Количество белков в плазме.

3. Осмотическое давление крови.

4. Содержание глюкозы. В нормальных условиях оно равно 3,3-5,5 ммоль/л.

5. Содержание кислорода и углекислого газа в крови. Артериальная кровь содержит 18-20 об% кислорода и 50-52 об% углекислого газа, в венозной крови кислорода 12 об % и углекислого газа 55-58 об %.

6. Кислотно-основное состояние крови.

Плазма крови.

Удельный вес плазмы 1,025-1,029 г/см3, вязкость 1,9-2,6 пуаз. Плазма содержит 90-92% воды и 8-10% сухого остатка. В состав сухого остатка входят минеральные вещества (около 0,9%), в основном хлорид натрия, катионы калия, магния, кальция, анионы хлора, гидрокарбонат, фосфатанионы. Кроме того, в нем имеются глюкоза, а также продукты гидролиза белков – мочевина, креатинин, аминокислоты и т.д. Они называются остаточным азотом. Содержание глюкозы в плазме 3,6-6,9 ммоль/л, остаточного азота 14,3-28,6 ммоль/л. Особое значение имеют белки плазмы. Их общее количество 7-8%. Белки состоят из нескольких фракций, но наибольшее значение имеют альбумины, глобулины и фибриноген. Альбуминов содержится 3,5-5%, глобулинов 2-3%, фибриногена 0,3-0,4%. При нормальном питании в организме человека ежесуточно вырабатывается около 17 г альбуминов и 5 г глобулинов.

Сухой остаток состоит из:

a) оpганических веществ

b) неоpганических веществ

К оpганическим веществам крови относятся:

· Белки плазмы (общее количество 7-8 %) – альбумины (4,5 %), глобулины (2-3,5 %), фибpиноген (0,2-0,4 %)‏

· Hебелковые азотсодеpжащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, кpеатин, кpеатинин, аммиак)‏ Общее количество небелкового азота (остаточный азот) составляет 11-15 ммоль/л (30-40 мг%). Пpи наpушении функции почек, выделяющих шлаки из оpганизма, содеpжание остаточного азота pезко возpастает

· Безазотистые оpганические вещества: глюкоза 4,4-6,65 ммоль/л (80-120 мг%), нейтpальные жиpы, липиды

· Феpменты и пpофеpменты: некотоpые из них участвуют в пpоцессах свёpтывания кpови и фибpинолиза (пpотpомбин, пpофибpинолизин), некотоpые - pасщепляют гликоген, жиpы, белки и дp.

Hеоpганические вещества плазмы составляют около 1% от её состава

К ним относятся пpеимущественно катионы (Na+, Ca2+, K+, Mg2+) и анионы (Cl-, HPO42-, HCO3-)‏

Из тканей оpганизма в кpовь поступает большое количество пpодуктов обмена, биологически активных веществ (сеpотонин, гистамин), гоpмонов, из кишечника всасываются питательные вещества, витамины

Однако состав плазмы от этого существенно не изменяется. Постоянство состава плазмы обеспечивают pегулятоpные механизмы, восстанавливающие состав и свойства внутpенней сpеды.

3.1. Электролитный состав плазмы важен для поддержания ее осмотического давления, кислотно-щелочного равновесия, функций клеточных элементов крови и сосудистой стенки, активности ферментов, процессов свертывания крови и фибринолиза. Основными ионами в плазме крови являются ионы натрия, калия, кальция, бикарбонатов, фосфатов. Кроме того, в плазме крови содержится около 15 микроэлементов – Cu, Co, Mn, Zn, Cr и др., которые играют важную роль в процессах метаболизма в клетках, так как они входят в состав ферментов, участвуют в процессах образования клеток крови и гемоглобина.

Электролитный состав плазмы важен для поддержания ее осмо­тического давления, кислотно-щелочного состояния, функций кле­точных элементов крови и сосудистой стенки, активности фермен­тов, процессов свертывания крови и фибринолиза. Поскольку плаз­ма крови постоянно обменивается электролитами с микросредой клеток, содержание в ней электролитов в значительной мере опре­деляет и фундаментальные свойства клеточных элементов органов — возбудимость и сократимость, секреторную активность и проница­емость мембран, биоэнергетические процессы.

Отличается в плазме и эритроцитах содержание и ряда анионов, прежде всего хлора и бикарбоната. Эти различия обусловлены об­меном этих анионов между эритроцитами и плазмой в капиллярах легких и тканей при дыхании.

Содержание натрия и калия в плазме крови — жесткие гомеостатические константы, зависящие от баланса процессов поступления и выведения ионов, а также их перераспределения между клетками и внеклеточной средой. Регуляция гомеостаза этих катионов осу­ществляется изменениями поведения (большее или меньшее потреб­ление соли) и системами гуморальной регуляции, среди которых основное значение имеют раас и пнут.

Под осмотическим давлением понимают силу, которая заставляет растворитель (для крови это вода) переходить через полупроницаемую мембрану из менее концентрированного в более концентрированный раствор. Осмотическое давление крови зависит от концентрации в плазме крови молекул растворенных в ней веществ (электролитов и неэлектролитов) и представляет собой сумму осмотических давлений всех содержащихся в ней компонентов. NaCl создает более 60 % осмотического давления, а вообще все неорганические электролиты определяют до 96 % общего осмотического давления. У здорового человека осмотическое давление составляет 7,6 атм. Растворы с таким осмотическим давлением называют изотоническими, или физиологическими. Раствор NaCl с концентрацией 0,85 % является изотоническим. Гипертонический раствор – раствор с более высоким осмотическим давлением, гипотонический – с более низким.

Под осмотической резистентностью эритроцитов понимается устойчивость эритроцитов по отношению к гипотоническим растворам NaCl. Изотоническим является 0,85% раствор натрия хлорида. Растворы его с меньшей концентрацией являются гипотоническими. Различают минимальную и максимальную резистентность эритроцитов:

  • Минимальная резистентность эритроцитов определяется максималь­ной концентрацией гипотонического раствора натрия хлор (в серии растворов с постепенно уменьшающейся концентрацией), при которой начинается разрушение наименее устойчивых эритроцитов, находящихся в растворе в течение 3 ч.
  • Максимальная резистентность эритроцитов определяется максималь­ной концентрацией гипотонического раствора натрия хлор, вызываю­щего в течение 3 ч разрушение всех эритроцитов помещенной в этот раствор крови.

У здоровых людей минимальная резистентность эритроцитов равна 0,45—0,50%, максимальная — 0,35—0,40% раствора натрия хлорида. Наименее устойчивы к гипотоническим растворам сфероциты.

Наиболее выраженное понижение осмотической стойкости эритроци­тов наблюдается при врожденной гемолитической анемии. Незначительное понижение осмотической стойкости эритроцитов может иногда наблюдаться при полицитемии, туберкулезе, лимфограну­лематозе, циррозах печени, лейкозах. Повышение осмотической стойкости эритроцитов возможно при механической желтухе. Постоянство осмотического давления крови поддерживается главным образом благодаря деятельности почек, через которые выводится избыток воды и растворимых солей.

Белки плазмы крови

Белки плазмы составляют основную массу органических веществ плазмы крови.

Белки плазмы крови подразделяются на:

1) альбумины (60,5 % от общего количества белков)‏

2) глобулины (35,4 %)‏

3) фибриноген (4,1 %)‏

Особое значение имеют белки плазмы. Их общее количество 7-8%. Белки состоят из нескольких фракций, но наибольшее значение имеют альбумины, глобулины и фибриноген. Альбуминов содержится 3,5-5%, глобулинов 2-3%, фибриногена 0,3-0,4%. При нормальном питании в организме человека ежесуточно вырабатывается около 17 г альбуминов и 5 г глобулинов.

Функции альбуминов плазмы:

1. Создают большую часть онкотического давления, обеспечивая нормальное распределение воды и ионов между кровью и тканевой жидкостью, мочеобразование.

2. Служат белковым резервом крови, который составляет около 200 г белка. Он используется организмом при белковом голодании.

3. Благодаря отрицательному заряду способствуют стабилизации крови как колллоидной системы, препятствуют оседанию форменных элементов крови.

4. Поддерживают кислотно-щелочное равновесие, являясь буферной системой.

5. Переносят половые гормоны, желчные пигменты и ионы кальция. Эти же функции выполняют и другие фракции белков, но в значительно меньшей мере. Им свойственны особые функции. Глобулины включают четыре субфракции – альфа-1-, альфа-2-, бета-, гамма-глобулины

Функции глобулинов:

1. альфа-глобулины участвуют в регуляции эритропоэза, т.к. один из них является эритропоэтином;

2. необходимы для свертывания крови, т.к. к ним относится один из факторов свертывания – протромбин;

3. участвуют в растворении тромба, т.к. содержат фермент фибринолитической системы плазминоген;

4. альфа-2-глобулин церулоплазмин переносит 90% ионов меди, необходимых организму;

5. переносят гормоны тироксин и кортизол;

6. бета-глобулин трансферин переносит основную массу железа;

7. несколько бета-глобулинов являются факторами свертывания крови;

Фибриноген является растворимым предшественником белка фибрина, из которого образуется сгусток крови – тромб;

Гамма-глобулины выполняют защитную функцию, являясь иммуноглобулинами.

Часть осмотического давления, создаваемая белками плазмы, составляет так называемое онкотическое давление, величина которого равна 0,03-0,04 атм или 25-30 мм рт. ст. Онкотическое давление является фактором, препятствующим переходу воды из кровеносного русла в ткани и способствующим переходу воды из тканей в кровь. При снижении величины онкотического давления крови происходит выход воды из сосудов в иптерстициальное пространство, что приводит к отеку тканей.

Однако у онкотического давления есть две особенности, благодаря которым оно играет ключевую роль в переходе жидкости через стенку капилляра:

· белки не могут проходить через поры капилляра, и поэтому общее осмотическое давление в крови на 28 мм рт. ст. выше, чем в тканях (то есть в крови 5500 мм рт. ст., а в тканях — 5500 – 28 мм рт. ст.);

· онкотическое давление мало по сравнению с общим осмотическим давлением, но вполне сопоставимо с гидростатическим давлением).

Поскольку онкотическое давление в крови выше, чем в тканях, оно удерживает воду в капилляре и, таким образом, направлено из ткани в капилляр. На самом деле на транспорт воды действуют также гидростатическое давление и онкотическое давление в тканях, но в норме они малы по сравнению с соответствующими давлениями в капилляре и потому для простоты здесь не рассматриваются. Однако в некоторых органах и в некоторых ситуациях они могут быть довольно важны. В области артериального конца капилляра гидростатическое давление составляет около 30—40 мм рт. ст., то есть превышает онкотическое. Следовательно, результирующая движущая сила направлена наружу, и жидкость выходит из капилляра. Этот процесс называется фильтрацией.

По мере прохождения крови по капилляру гидростатическое давление падает, и в области венозного конца составляет около 10 мм рт. ст., то есть становится меньше онкотического (последнее не меняется, так как белки в ткани не выходят). Следовательно, результирующая движущая сила направлена внутрь, и жидкость входит в капилляр. Этот процесс называется реабсорбцией. Путем реабсорбции в области венозных концов капилляров всасывается лишь 90% отфильтровавшейся жидкости. Остальные 10% (за сутки во всех капиллярах это составляет около 2 л) возвращаются в кровь через лимфатические сосуды. Это равновесие между фильтрацией и реабсорбцией в капилляре называется фильтрационно-реабсорбционным равновесием.

СОЭ

Удельный вес эритроцитов выше, чем плазмы. Поэтому в капилляре или пробирке с кровью, содержащей вещества, препятствующие ее свертыванию, происходит оседание эритроцитов. Над кровью появляется светлый столбик плазмы. Это явление называется реакцией оседания эритроцитов. В сосудистой системе эритроциты не оседают. Это связано с тем, что они имеют одинаковый отрицательный заряд и отталкиваются друг от друга. Такой же отрицательный заряд имеет стенка сосудов. Способствуют взвешенному состоянию эритроцитов и низкомолекулярные белки плазмы – альбумины. Оседание эритроцитов вне организма обусловлено потерей ими заряда и образованием скоплений – агрегатов. В норме скорость оседания эритроцитов (СОЭ) у мужчин 2-10 мм/час, у женщин 2-15 мм/час. Она возрастает при беременности. Особенно СОЭ повышается при различных заболеваниях. Например, при анемии она возрастает из-за снижения вязкости крови. СОЭ также увеличивается при инфекционных, воспалительных заболеваниях и особенно злокачественных опухолях. В этом случае ее возрастание объясняется накоплением в крови грубодисперсных глобулинов – агломеринов.

Выдвинуто 2 теории, объясняющие повышение СОЭ:

1. Электрохимическая. Она связывает оседание эритроцитов с нейтрализацией их отрицательного заряда агломеринами.

2. Теория лабильности коллоидов. Объясняет агрегацию и оседание эритроцитов накоплением в крови агломеринов и фибриногена. Они, являются неустойчивыми коллоидами, поэтому осаждаются на эритроцитах. Клейкость их оболочки увеличивается и они склеиваются в агрегаты.

PH крови

Для организма важнейшее значение имеет поддержание постоянства реакции внутренней среды. Это необходимо для нормального протекания ферментативных процессов в клетках и внеклеточной среде, синтеза и гидролиза различных веществ, поддержания ионных градиентов в клетках, транспорта газов и т.д. Активная реакция среды определяется соотношением водородных и гидроксильных ионов. Постоянство кислотно-щелочного равновесия внутренней среды поддерживается буферными системами крови и физиологическими механизмами.

Буферные системы – это комплекс слабых кислоты и основания, который способен препятствовать сдвигу реакции в ту или иную сторону. Кровь содержит следующие буферные системы:

1. Бикарбонатная (гидрокарбонатная). Она состоит из свободной угольной кислоты и гидрокарбонатов натрия и калия (NaHCO3 и КНСО3). При накоплении в крови щелочей они взаимодействуют с угольной кислотой. Образуются гидрокарбонат и вода. Если кислотность крови возрастает, то кислоты соединяются с гидрокарбонатами. Образуются нейтральные соли и угольная кислота. В легких она распадается на углекислый газ и воду, которые выдыхаются.

2. Фосфатная буферная система. Она является комплексом гидрофосфата и дигидрофосфата натрия (Na2HPО4 и NaH2PО4). Первый проявляет свойства основания, второй слабой кислоты. Кислоты образуют с гидрофосфатом натрия нейтральную соль и дигидрофосфат натрия (Na2HPО4+H2CО3= NaHCО3+NaH2PО4).

3. Белковая буферная система. Белки являются буфером благодаря своей амфотерности. Т.е. в зависимости от реакции среды они проявляют либо щелочные, либо кислотные свойства. Щелочные свойства им придают концевые аминогруппы белков, а кислотные карбоксильные. Хотя буферная емкость белковой системы небольшая, она играет важную роль в межклеточной жидкости.

4. Гемоглобиновая буферная система эритроцитов. Самая мощная буферная система. Состоит из восстановленного гемоглобина и калиевой соли оксигемоглобина. Аминокислота гистидин, входящая в структуру гемоглобина, имеет карбоксильные и амидные группировки. Первые обеспечивают гемоглобину свойства слабой кислоты, вторые – слабого основания. При диссоциации оксигемоглобина в капиллярах тканей на кислород и гемоглобин, последний приобретает способность связываться с катионами водорода. Они образуются в результате диссоциации, образовавшейся из углекислого газа угольной кислоты. Угольная кислота образуется из углекислого газа и воды под действием фермента карбоангидразы, имеющейся в эритроцитах (формула). Анионы угольной кислоты связываются с катионами калия, находящимися в эритроцитах и катионами натрия в плазме крови. Образуются гидрокарбонаты калия и натрия, сохраняющие буферную емкость крови. Кроме того, восстановленный гемоглобин может непосредственно связываться с углекислым газом с образованием карбгемоглобина. Это также препятствует сдвигу реакции крови в кислую сторону.

Физиологические механизмы поддержания кислотно-щелочного равновесия обеспечиваются легкими, почками, ЖКТ, печенью. С помощью легких из крови удаляется угольная кислота. В организме ежеминутно образуется 10 ммоль угольной кислоты. Закисление крови не происходит потому, что из нее образуются бикарбонаты. В капиллярах легких из анионов угольной кислоты и протонов вновь образуется угольная кислота, которая под влиянием фермента карбоангидразы расщепляется на углекислый газ и воду, которые выдыхаются. Через почки из крови выделяются нелетучие органические и неорганические кислоты. Они выводятся как в свободном состоянии, так и в виде солей. В физиологических условиях почки моча имеет кислую реакцию (рН=5-7).

Почки участвуют в регуляции кислотно-щелочного гомеостаза с помощью следующих механизмов:

1. секреция эпителием канальцев водородных ионов, образовавшихся из угольной кислоты, в мочу;

2. образование в клетках эпителия гидрокарбонатов, которые поступают в кровь и увеличивают ее щелочной резерв. Они образуются из угольной кислоты и катионов натрия и калия.

Первые 2 процесса обусловлены наличием в этих клетках карбоангидразы;

3. синтез аммиака, катион которого может связываться с катионов водорода;

4. обратное всасывание в канальцах из первичной мочи в кровь гидрокарбонатов;

5. фильтрация в мочу избытка кислых и щелочных соединений.

Значение органов пищеварения для поддержания кислотно-щелочного равновесия небольшое. В частности, в желудке в виде соляной кислоты выделяются протоны. Поджелудочной железой и железами тонкого кишечника гидрокарбонаты. Но в то же время и протоны и гидрокарбонаты обратно всасываются в кровь. В результате реакция крови не изменяется. В печени из молочной кислоты образуется гликоген.

Однако нарушение функций пищеварительного канала сопровождается сдвигом реакции крови. Так, стойкое повышение кислотности желудочного сока приводит к увеличению щелочного резерва крови. Это же возникает при частой рвоте из-за потери катионов водорода и хлоридов.

Кислотно-щелочной баланс крови характеризуется несколькими показателями:

1. актуальный рН. Это фактическая величина рН крови. В норме артериальная кровь имеет рН=7,34-7,36;

2. парциальное напряжение СО2 (РСО2). Для артериальной крови 36-44 мм рт.ст;

3. стандартный бикарбонат крови (SB). Содержание бикарбонат (гидрокарбонат) анионов при стандартных условиях, т.е. нормальном насыщении гемоглобина кислородом. Величина 21,3 – 24,8 ммоль/л;

4. актуальный бикарбонат крови (АВ). Истинная концентрация бикарбонат анионов. В норме практически не отличается от стандартного, но возможны физиологические колебания от 19 до 25 ммоль/л. Раньше этот показатель называли щелочным резервом. Он определяет способность крови нейтрализовать кислоты;

5. буферные основания (ВВ). Общая сумма всех анионов, обладающих буферными свойствами, в стандартных условиях, 40-60 ммоль/л

При определенных условиях реакция крови может изменяться. Сдвиг реакции крови в кислую сторону, называется ацидозом, в щелочную – алкалозом. Эти изменения рН могут быть дыхательными и недыхательными (метаболическими). Дыхательные изменения реакции крови обусловлены изменениями содержания углекислого газа. Недыхательные – изменениями бикарбонат-анионов. В здоровом организме, например, при пониженном атмосферном давлении или усиленном дыхании (гипервентиляции) снижается концентрация СО2 в крови, возникает дыхательный алкалоз. Недыхательный алкалоз развивается при длительном приеме растительной пищи или воды, содержащей гидрокарбонаты. При задержке дыхания развивается дыхательный ацидоз, а тяжелой физической работе – недыхательный ацидоз.

Изменения рН могут быть компенсированными и некомпенсированными. Если реакция крови не изменяется, то это компенсированные алкалоз и ацидоз. Сдвиги компенсируются буферными системами, в первую очередь бикарбонатной. Поэтому они наблюдаются в здоровом организме. При недостатке или избытке буферных компонентов имеет место частично компенсированные ацидоз и алкалоз, но рН не выходит за пределы нормы. Если же реакция крови меньше 7,29 или больше 7,56 наблюдается некомпенсированные ацидоз и алкалоз. Самым грозным состоянием в клинике является некомпенсированный метаболический ацидоз. Он возникает вследствие нарушений кровообращения и гипоксии тканей, а как следствие – усиленного анаэробного расщепления жиров и белков и т.д. При рН ниже 7,0 происходят глубокие изменения функций ЦНС (кома), возникает фибрилляция сердца, падает артериальное давление, угнетается дыхание и может наступить смерть. Метаболический ацидоз устраняется коррекцией электролитного состава, искусственной вентиляцией и т.д.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: