Понятие гамильтонова графа. Теорема Дирака




 

Граф называется гамильтоновым, если в нем имеется простой цикл, содержащий каждую вершину этого графа. Сам этот цикл также называется гамильтоновым. Гамильтоновой называют и простую цепь, содержащую каждую вершину графа. Слово «гамильтонов» в этих определениях связано с именем известного ирландского математика У. Гамильтона, которым в 1859 году предложена следующая игра «Кругосветное путешествие». Каждой из 20 вершин додекаэдра (рис. 1) приписано название одного из крупных городов мира.

 

рис. 2


Требуется, переходя от одного города к другому по ребрам додекаэдра, посетить каждый город в точности один раз и вернуться в исходный город.

Теорема Оре (О.Оре, 1960). Если для любой пары u и v несмежных вершин графа G порядка n≥3 выполняется неравенство deg u+deg v≥n, то G – гамильтонов граф.

Теорема Дирака (следствие теоремы Оре) (Г.Дирак,1952 г.). Если |G|=n≥3 и для любой вершины v графа G выполняется неравенство deg v≥n/2, то G – гамильтонов граф.

Лемма (о длине цикла)

Пусть - произвольный неориентированный граф и - минимальная степень его вершин. Если , то в графе существует цикл длиной .

Доказательство:

Рассмотрим путь максимальной длины . Все смежные с вершины лежат на . Обозначим . Тогда . Цикл имеет длину

Доказательство теоремы Дирака

Пусть - цикл наибольшей длины в графе . По лемме его длина . Если - гамильтонов, то теорема доказана. Предположим обратное, т. е. . Рассмотрим путь наибольшей длины . Заметим, что по условию , а значит и каждая вершина из смежна с некоторыми вершинами из . Заметим, что вершина не может быть смежна:

· с вершинами из , расстояние от которых до (по ) не превышает m. Действительно, пусть вершина и расстояние от до по циклу меньше либо равно . Тогда этот участок цикла можно заменить на , длина которого . Таким образом образуется цикл большей длины, что противоречит предположению о максимальности цикл .

· двум смежным вершинам на . Пусть и . Тогда заменив ребро на , увеличим длину цикла на .

· вершинам из , поскольку максимальный.

Получаем .

Противоречие.

граф теорема коммивояжер

 


Задача о коммивояжере

 

Историческая справка

 

Точно неизвестно, когда проблему коммивояжера исследовали впервые. Однако, известна изданная в 1832 году книга с названием «Коммивояжер — как он должен вести себя и что должен делать для того, чтобы доставлять товар и иметь успех в своих делах — советы старого курьера» в которой описана проблема, но математический аппарат для её решения не применяется. Зато в ней предложены примеры маршрутов для некоторых регионов Германии и Швейцарии.

Ранним вариантом задачи может рассматриваться игра Уильяма Гамильтона 19 века, которая заключалась в том, чтобы найти маршруты на графе с 20 узлами. Первые упоминания в качестве математической задачи на оптимизацию принадлежат Карлу Менгеру, который сформулировал её на математическом коллоквиуме в 1930 году так: «Мы называем проблемой посыльного (поскольку этот вопрос возникает у каждого почтальона, в частности, ее решают многие путешественники) задачу найти кратчайший путь между конечным множеством мест, расстояние между которыми известно.»

Вскоре появилось известное сейчас название задача странствующего торговца, которую предложил Гаслер Уитни из Принстонского университета.

Вместе с простотой определения и сравнительной простотой нахождения хороших решений задача коммивояжера отличается тем, что нахождение действительно оптимального пути является достаточно сложной задачей. Учитывая эти свойства, начиная со второй половины 20-го века, исследование задачи коммивояжера имеет не столько практический смысл, сколько теоретический в качестве модели для разработки новых алгоритмов оптимизации.

Многие современные распространенные методы дискретной оптимизации, такие как метод отсечений, ветвей и границ и различные варианты эвристических алгоритмов, были разработаны на примере задачи коммивояжера.

В 1950-е и 1960-е годы задача коммивояжера привлекла внимание ученых в США и Европе. Важный вклад в исследование задачи принадлежит Джорджу Данцигу, Делберту Рею Фалкерсону и Селмеру Джонсону, которые в 1954 году в институте RAND Corporation сформулировали задачу в виде задачи дискретной оптимизации и применили для ее решения метод отсечений. Используя этот метод, они построили путь коммивояжера для одной частной постановки задачи с 49 городами и обосновали его оптимальность. В 1960-е и 1970-е годы задача изучалась многими учеными как теоретически, так и с точки зрения ее приложений в информатике, экономике, химии и биологии.

Ричард Карп в 1972 году доказал NP-полноту задачи поиска гамильтоновых путей, из чего, благодаря полиномиальной сводимости, вытекала NP-трудность задачи коммивояжера. На основе этих свойств им было приведено теоретическое обоснование сложности поиска решений задачи на практике.

Больших успехов удалось достичь в конце 1970-х и 1980-х годах, когда Мартин Грётчел, Манфред Падберг и Джованни Ринальди и другие, с применением новых методов деления плоскостью, ветвей и границ вычислили решение для отдельного случая задачи с 2393 городами.

В 1990-е годы Дэвид Аплгейт, Роберт Биксби, Вашека Шватал и Уильям Кук установили рекорды по программе Конкорд. Герхард Райнельт создал TSPLIB — набор стандартизованных экземпляров задачи коммивояжера различной степени сложности для сравнения результатов работы различных групп исследователей. В марте 2005 года задача с 33 810 узлами была решена программой Конкорд: был вычислен путь длиной в 66 048 945 и доказано отсутствие более коротких путей. В апреле 2006 было найдено решение для экземпляра с 85 900 узлами. Используя методы декомпозиции, можно вычислить решения для случаев задачи с миллионами узлов, длина которых менее чем на 1 % больше оптимальной.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: