Глава 5. ЗАЩИТА ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ




Существование биологических видов, а следовательно, и феномена жизни как такового целиком зависит от точности передачи генетической информации как по вертикали – от организмов-родителей потомкам, так и по горизонтали – от одной соматической клетки к другой в процессе онтогенетического развития многоклеточных организмов. В предыдущей главе были рассмотрены основные механизмы функционирования главной генетической системы, обеспечивающей воспроизведение генетической информации путем удвоения молекул ДНК, – системы репликации, точность функционирования которой поражает воображение. Для правильной передачи генетической информации исключительно важны и молекулярные механизмы, обеспечивающие расхождение удвоившихся хромосом между дочерними клетками у про- и эукариот, в последнем случае при митозе и мейозе. Однако ни одна из существующих генетических систем не работает безошибочно. Поэтому не менее важную роль в жизнедеятельности организма играет его система репарации (исправления) ошибок, случайно возникающих при репликации ДНК и после ее завершения.

У проблемы точности передачи генетической информации в ряду поколений клеток и организмов имеется и другая сторона. Чрезмерная консервация генетической информации, заключенной в отдельных генетических локусах, может быть вредной для организма и вида в целом. В частности, одним из механизмов, лежащих в основе возникновения разнообразия антител, являются запрограммированные изменения генов иммуноглобулинов, которые закрепляются в геноме лимфоцитов в результате их отбора в онтогенезе. Высокий темп изменений некоторых генетических локусов у паразитических организмов, например у трипаносом, в результате которых меняется структура антигенных детерминант на поверхности их клеток, необходим для их выживания, так как помогает этим организмам избежать нейтрализующего действия иммунной системы организма-хозяина. Другим хорошо известным примером такого рода является генетическая изменчивость вируса гриппа. Наконец, абсолютный консерватизм в передаче генетической информации по вертикали сделал бы невозможным филогенетическое развитие организмов, их эволюционные преобразования, приведшие, в конечном счете, к тому разнообразию биологических видов, которое сегодня наблюдается в природе. Эволюционно сложившиеся отношения между точностью функционирования вышеупомянутых генетических систем и частотой ошибок, возникающих при воспроизведении генетической информации отдельных генетических локусов, четко сбалансированы между собой, и уже установлено, что в ряде случаев являются регулируемыми. Запрограммированные и случайные наследуемые изменения генома, называемые мутациями, могут сопровождаться колоссальными количественными и качественными изменениями в экспрессии генов.

Мутации

Мутации – это наследуемые изменения структуры генома. Поскольку основу любого генома составляют нуклеиновые кислоты – ДНК или РНК, то под действием мутаций происходит, прежде всего, изменение структуры геномных нуклеиновых кислот. Процесс возникновения мутаций, основанный на различных механизмах, называют мутагенезом. В зависимости от факторов, вызывающих мутации, последние принято разделять на спонтанные и индуцированные. Считается, что спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды. При этом широкое распространение получило мнение о том, что спонтанные мутации в эукариотических клетках возникают с частотой 10-9–10-12 на нуклеотид за клеточную генерацию. Теперь, однако, становится ясно, что такие цифры не отражают реальности. Они не учитывают того факта, что частоты спонтанных мутаций могут существенно (на несколько порядков) изменяться от локуса к локусу и, скорее всего, указывают на нижний предел частоты мутаций в отдельных наиболее стабильных участках генома.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды. Среди важнейших мутагенных факторов, прежде всего, необходимо отметить химические мутагены – органические и неорганические вещества, вызывающие мутации, а также ионизирующее излучение. При детальном рассмотрении спонтанных и индуцированных мутаций становится ясно, что между этими двумя типами нет существенных различий. Действительно, большинство спонтанных мутаций возникает в результате мутагенного воздействия, которое их индуцирует, но не регистрируется экспериментатором. На более прочном фундаменте находится классификация мутаций, в которой учитываются молекулярные процессы, лежащие в основе их возникновения.

В классификации, основанной на размерах сегментов генома, подвергающихся преобразованиям, мутации разделяют на геномные, хромосомные и генные. При геномных мутациях у организма-мутанта происходит внезапное изменение числа хромосом, кратное целому геному. Если через 2n обозначить число хромосом в исходном диплоидном геноме, то в результате геномной мутации, называемой полиплоидизацией, происходит образование полиплоидных организмов, геном которых представлен 4n, 6n и т.д. хромосомами. В зависимости от происхождения хромосом в полиплоидах различают аллополиплоидию, в результате которой происходит объединение при гибридизации целых неродственных геномов, и аутополиплоидию, для которой характерно адекватное увеличение числа хромосом собственного генома, кратное 2n.

При хромосомных мутациях происходят как изменение числа отдельных хромосом в геноме (анеуплоидия), так и крупные перестройки структуры отдельных хромосом. Последние получили название хромосомных аберраций. В этом случае наблюдаются потеря (делеции) или удвоение части (дупликации) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсии), а также перенос части генетического материала с одной хромосомы на другую (транслокации) (крайний случай – объединение целых хромосом).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точковых мутациях. Поскольку в состав ДНК входят азотистые основания только двух типов – пурины и пиримидины, все точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Из-за вырожденности генетического кода могут быть три генетических последствия точковых мутаций: сохранение смысла кодона (синонимическая замена нуклеотида), изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация) или образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер – UAG, охр – UAA и опал – UGA. В соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов (например амбер-мутация).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трем, что связано с триплетностью генетического кода. Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, – обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: