Теорема. Существует пять различных ( с точностью до подобия) типов




Определение. Многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) в каждой его вершине сходится одинаковое число ребер; 4) все его двугранные равны.

Примером правильного многогранника является куб: он является выпуклым многогранником, все его грани – равные квадраты, в каждой вершине сходятся три ребра, и все двугранные углы куба прямые. Правильный тетраэдр также является правильным многогранником.

Возникает вопрос: сколько существует различных типов правильных многогранников?

Пять типов правильных многогранников.

Рассмотрим произвольный правильный многогранник М, у которого В вершин, Р ребер и Г граней. По теореме Эйлера для этого многогранника выполняется равенство:

В - Р + Г = 2. (1)

Пусть каждая грань данного многогранника содержит m ребер (сторон), и в каждой вершине сходятся n ребер. Очевидно,

m , n . (2)

Так как у многогранника В вершин, и каждой из которых сходятся n ребер, то получаем n ребер. Но любое ребро соединяет две вершины многогранника, поэтому в произведение n каждое ребро войдет дважды. Значит у многогранника имеется различных ребер. Тогда

= Р В = . (3)

Далее, в каждой грани многогранника М содержится m ребер, а число граней равно Г. Так как каждое ребро принадлежит двум смежным граням, то число различных ребер многогранника равно . Тогда

Г= . (4)

Из (1), (3), (4) получаем - Р + = 2, откуда

+ = + > . (5)

Таким образом, имеем

 

Из неравенств 3 и 3 следует, что гранями правильного многогранника могут быть либо правильные треугольники, либо правильные четырехугольники, либо правильные пятиугольники. Причем в случаях m = n = 4; m = 4, n = 5; m = 5, n = 4; m = n = 5 приходим к противоречию с условием . Поэтому остаются возможными пять случаев: 1) m = n = 3; 2) m = 4, n = 3; 3) m = 3, n = 4; 4) m = 5, n = 3; 5) m = 3, n = 5.

Рассмотрим каждый из этих случаев, используя соотношения (5), (4) и (3).

1) m = n = 3 (каждая грань многогранника – правильный треугольник. Это – известный нам правильный тетраэдртетраэдр » означает четырехгранник).

2) m = 4, n = 3 (каждая грань квадрат, и в каждой вершине сходятся три ребра). Имеем

Р = 12; В = 8; Г = 6.

Получаем правильный шестигранник, у которого каждая грань – квадрат. Этот многогранник называется правильным гексаэдром и является кубом («гексаэдр» -- шестигранник), любой параллелепипед – гексаэдр.

 

 

3) m = 3, n = 4 (каждая грань –правильный треугольник, в каждой вершине сходятся четыре ребра). Имеем

Р = 12; В = =6; Г = =8.

Получаем правильный восьмигранник, у которого каждая грань – правильный треугольник. Этот многогранник называется правильным октаэдром («октаэдр» -- восьмигранник).

 

4) m = 5, n = 3 (каждая грань – правильный пятиугольник, в каждой вершине сходятся три ребра). Имеем:

Р = 30; В = = 20; Г = = 12.

Получаем правильный двенадцатигранник, у которого каждая грань – правильный пятиугольник. Этот многогранник называется правильным додекаэдромдодекаэдр » -- двенадцатигранник).

 

5) m = 3,n = 5 (каждая грань – правильный треугольник, в каждой вершине сходятся пять ребер). Имеем

Р = 30; В = =12; Г = = 20.

Получаем правильный двадцатигранник. Этот многогранник называется правильным икосаэдромикосаэдр » - двадцатигранник).

 

 

Таким образом, мы получили следующую теорему.

 

 
 


Теорема. Существует пять различных (с точностью до подобия) типов



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: