Определение. Многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) в каждой его вершине сходится одинаковое число ребер; 4) все его двугранные равны.
Примером правильного многогранника является куб: он является выпуклым многогранником, все его грани – равные квадраты, в каждой вершине сходятся три ребра, и все двугранные углы куба прямые. Правильный тетраэдр также является правильным многогранником.
Возникает вопрос: сколько существует различных типов правильных многогранников?
Пять типов правильных многогранников.
Рассмотрим произвольный правильный многогранник М, у которого В вершин, Р ребер и Г граней. По теореме Эйлера для этого многогранника выполняется равенство:
В - Р + Г = 2. (1)
Пусть каждая грань данного многогранника содержит m ребер (сторон), и в каждой вершине сходятся n ребер. Очевидно,
m
, n
. (2)
Так как у многогранника В вершин, и каждой из которых сходятся n ребер, то получаем n ребер. Но любое ребро соединяет две вершины многогранника, поэтому в произведение n
каждое ребро войдет дважды. Значит у многогранника имеется
различных ребер. Тогда
= Р
В =
. (3)
Далее, в каждой грани многогранника М содержится m ребер, а число граней равно Г. Так как каждое ребро принадлежит двум смежным граням, то число различных ребер многогранника равно . Тогда
=Р
Г=
. (4)
Из (1), (3), (4) получаем - Р +
= 2, откуда
+
=
+
>
. (5)
Таким образом, имеем
Из неравенств 3 и 3
следует, что гранями правильного многогранника могут быть либо правильные треугольники, либо правильные четырехугольники, либо правильные пятиугольники. Причем в случаях m = n = 4; m = 4, n = 5; m = 5, n = 4; m = n = 5 приходим к противоречию с условием
. Поэтому остаются возможными пять случаев: 1) m = n = 3; 2) m = 4, n = 3; 3) m = 3, n = 4; 4) m = 5, n = 3; 5) m = 3, n = 5.
Рассмотрим каждый из этих случаев, используя соотношения (5), (4) и (3).
1) m = n = 3 (каждая грань многогранника – правильный треугольник. Это – известный нам правильный тетраэдр («тетраэдр » означает четырехгранник).
2) m = 4, n = 3 (каждая грань квадрат, и в каждой вершине сходятся три ребра). Имеем
Р = 12; В =
8; Г =
6.
Получаем правильный шестигранник, у которого каждая грань – квадрат. Этот многогранник называется правильным гексаэдром и является кубом («гексаэдр» -- шестигранник), любой параллелепипед – гексаэдр.
3) m = 3, n = 4 (каждая грань –правильный треугольник, в каждой вершине сходятся четыре ребра). Имеем
Р = 12; В =
=6; Г =
=8.
Получаем правильный восьмигранник, у которого каждая грань – правильный треугольник. Этот многогранник называется правильным октаэдром («октаэдр» -- восьмигранник).
4) m = 5, n = 3 (каждая грань – правильный пятиугольник, в каждой вершине сходятся три ребра). Имеем:
Р = 30; В =
= 20; Г =
= 12.
Получаем правильный двенадцатигранник, у которого каждая грань – правильный пятиугольник. Этот многогранник называется правильным додекаэдром («додекаэдр » -- двенадцатигранник).
5) m = 3,n = 5 (каждая грань – правильный треугольник, в каждой вершине сходятся пять ребер). Имеем
Р = 30; В =
=12; Г =
= 20.
Получаем правильный двадцатигранник. Этот многогранник называется правильным икосаэдром («икосаэдр » - двадцатигранник).
Таким образом, мы получили следующую теорему.
![]() |
Теорема. Существует пять различных (с точностью до подобия) типов