b) Предел второй : память




Память компьютера ограничена его энтропией, утверждает Сет Ллойд, то есть степенью беспорядка, случайности в системе. [5] В теории информации понятие энтропии – аналог понятия количества информации. Чем более однородна и упорядочена система, тем меньше информации она в себе содержит.

Величина энтропии S пропорциональна натуральному логарифму числа различимых состояний системы (W): S =k*ln(W), где k – постоянная Больцмана. Смысл этого соотношения очевиден: чем больший объем информации вы хотите сохранить, тем больше различимых состояний вам потребуется. Например, для записи одного бита информации необходимо два состояния: включено и выключено. Чтобы записать два бита, потребуется уже 4 различных состояния, 3 бита - 8, n битов – 2eN состояний.

Таким образом, чем больше различных состояний в системе, тем выше ее запоминающая способность.

Чему равна энтропия “предельного” квантового компьютера?

Во-первых, она зависит от объема компьютера: чем он больше, тем большее число возможных положений в пространстве могут занимать его частицы. Во-вторых, необходимо знать распределение частиц по энергиям. Для этого можно воспользоваться готовым расчетом, выполненным еще сто лет назад Максом Планком при решении задачи о так называемом черном теле. Что же мы получим? Оказывается, литр квантов света может хранить около 1031 битов информации – это в 1020 раз больше, чем можно записать на современный 10-гигабайтный жесткий диск! Откуда такая огромная разница? По мнению Ллойда,все дело в том, что способ, которым в современных компьютерах записывается и хранится информация, чрезвычайно неэкономен и избыточен. За хранение одного бита отвечает целый “магнитный домен” – а ведь это миллионы атомов. Таким образом, вновь встает вопрос об уменьшении размеров ЭВМ.

 

 

с ) Перспективы развития квантовых устройств

 

На сегодня существует несколько идей и предложений, как сделать надежные и легко управляемые квантовые биты.

И. Чанг развивает идею об использовании в качестве кубитов спинов ядер некоторых органических молекул.

Российский исследователь М. В. Фейгельман, работающий в институте теоретической физики им. Ландау РАН, предлагает собирать квантовые регистры из миниатюрных сверхпроводниковых колец. Каждое кольцо выполняет роль кубита, а состояниям 0 и 1 соответствуют направления электрического тока в кольце-по часовой стрелке и против нее. [2] Переключать такие кубиты можно магнитным полем.

В физико-технологическом институте РАН группа под руководством академика К. А. Валиева предложила два варианта размещения кубитов в пролупроводниковых структурах. В первом случае роль кубита выполняет электрон в системе из двух потенциальных ям, создаваемых напряжением, приложенным к мини–электродам на поверхности полупроводника. Состояния 0 и 1 – положение электрона в одной из этих ям. Переключается кубит изменением напряжения на одном из электродов. В другом варианте ядром является ядро атома фосфора, внедренного в определенную точку полупроводника. Состояния 0 и 1 – направления спина ядра вдоль либо против внешнего магнитного поля. Управление ведется с помощью совместного действия магнитных импульсов резонансной частоты и импульсов напряжения. [2]

Таким образом, исследования активно ведутся, и можно предположить, что в самом недалеком будущем – лет через 10 – эффективный квантовый компьютер будет создан.

 

 

Заключение

 

 

Итак, подведем итоги. На основе анализа существующих научных теорий, приоритетных направлений развития микроэлектроники можно сделать следующие выводы:

 

1) Дальнейший прогресс компьютерной техники, бесспорно, возможен.

Он будет двигаться в направлении дальнейшей миниатюризации ЭВМ с одновременным увеличением ее быстродействия.

 

2) Современные полупроводниковые компьютеры скоро исчерпают свой потенциал, и даже при условии перехода к трехмерной архитектуре микросхем их быстродействие будет ограничено значением 1015 операций в секунду.

 

3) Устройство “компьютеров будущего” будет основано на

применении главным образом передовых отраслей широкого спектра

научных дисциплин (молекулярная электроника, молекулярная

биология, робототехника), а также квантовой механики,органической

химии и др. А для их производства компьютеров будут необходимы

значительные экономические затраты, в несколько десятки раз

превышающие затраты на производство современных “классических”

полупроводниковых компьютеров.

 

4) Разнообразие существующих на сегодняшний момент научных

разработок в области микроэлектроники, а также обширности

накопленных знаний в области других научных дисциплин (см.выше)

позволяет надеяться на создание “суперкомпьютера” в сроки 100-300

лет.

 

5) Скорость компьютерных вычислений достигнет значения 1051

операций в секунду.

 

6) Область применения ЭВМ будет чрезвычайно обширной.

Они будут:
a) по мере поступления рыночной информации

автоматически управлять процессами производства

продукции;
b) накапливать человеческие знания и обеспечивать

получение необходимой информации в течение нескольких

минут;
c) ставить диагнозы в медицине;
d) обрабатывать налоговые декларации;
e) создавать новые виды продукции;
f) регулировать движение всех видов транспорта;
g) вести домашнее хозяйство;
h) вести диалог с человеком и т.д.

 

И хотя многие из перечисленных функций могут представляться нам утопическими, все же не следует исключать возможность создания своего рода симбиоза "человек-ЭВМ".

Лишь после того, как компьютер превратится в пылающий огненный шар либо в микроскопическую черную дыру, прогресс вычислительной техники прекратится. Фантастика? Нет, ”еще одно свидетельство тесной связи физики и теории информации” [5]. Конечно, сегодня мы даже не можем себе представить, как достичь этих невероятных пределов. Однако не стоит отчаиваться. Если развитие ЭВМ будет идти теми же темпами, все описанное станет реальностью через каких-нибудь две сотни лет.

 

Библиография

 

 

1) Н.Л.Прохоров,К.В.Песелев.Перспективы развития

вычислительной техники.Книга 5: Малые ЭВМ.

М.,Наука.1989.

 

2) Л.Федичкин.“Квантовые компьютеры”(c. 24-29). Наука и жизнь.Москва.,издательство “Пресса”.2001.№1.

 

3) Р.Фейнман.Моделирование физики на компьютерах //

Квантовый компьютер и квантовые вычисления: Сб. в 2-х т. – Ижевск: РХД, 1999. Т2, с96-123.

 

4) Р.Фейнман.Моделирование физики на компьютерах //

Квантово-механические компьютеры: Сб. в 2-х т. – Ижевск: РХД, 1999. Т2, с123-156.

 

5) А.Шишлова.“Последний из компьютеров” (c. 68-72).

Наука и жизнь.М.,издательство “Пресса”.2001.№2.

 

6) А.Шишлова.”Молетроника.Системы исчисления. Органические материалы в современной микроэлектронике”(c. 64-70).Наука и жизнь.Москва, издательство “Пресса”.2000.№1.

 

7)New Scientist. Annals of the New York Academy of

Sciences.2001.№1.

8) Интернет: https://www.asphi.it/

 

9) Интернет https://europa.eu.int/comm/external_relations

 

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: