Свойство электронных пучков




Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка).

Электронные пучки обладают рядом ключевых свойств:

В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке. Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников.

При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике.

При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.

Возможность управлять движением пучков с помощью электрических и магнитных полей.

Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.

На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны – положительно заряженный электрод.

В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током. Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания. С его использованием количество движущихся электронов в разы увеличивается (рис. 6).

Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов – электронная. Хотя механизм появления этих свободных электронов совсем иной.

Вакуумный диод

Рассмотрим подробнее вакуумный диод. Существует две разновидности диодов: диод с нитью накаливания и анодом и диод с нитью накаливания, анодом и катодом. Первый называется диодом прямого накала, второй – косвенного накала. В технике применяется как первый, так и второй тип, однако диод прямого накала имеет такой недостаток, что при нагревании сопротивлении нити меняется, что влечет за собой изменение тока через диод. А так как для некоторых операций с использованием диодов необходим совершенно неизменный ток, то целесообразнее использовать второй тип диодов.

В обоих случаях температура нити накаливания для эффективной эмиссии должна равняться .

Диоды используются для выпрямления переменных токов. Если диод используется для преобразования токов промышленного значения, то он называется кенотроном.

Электрод, расположенный вблизи испускающего электроны элемента, называется катодом (), другой – анодом (). При правильном подключении при увеличении напряжения растет сила тока. При обратном же подключении ток идти не будет вообще (рис. 8). Этим вакуумные диоды выгодно отличаются от полупроводниковых, в которых при обратном включении ток хоть и минимальный, но есть. Благодаря этому свойству вакуумные диоды используются для выпрямления переменных токов.

Другим прибором, созданным на основе процессов протекания тока в вакууме, является электрический триод (рис. 9). Его конструкция отличается от диодной наличием третьего электрода, называемого сеткой. На принципах тока в вакууме основан также такой прибор, как электронно-лучевая трубка, составляющий основную часть таких приборов, как осциллограф и ламповые телевизоры.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-03-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: