Можно пойти четырьмя путями:
1) Изобразить проекцию и само тело. Это самый выигрышный вариант – если есть возможность выполнить два приличных чертежа, не ленитесь, делайте оба чертежа. Рекомендую в первую очередь.
2) Изобразить только тело. Годится, когда у тела несложная и очевидная проекция. Так, например, в разобранном примере хватило бы и трёхмерного чертежа. Однако тут есть и минус – по 3D-картинке неудобно определять порядок обхода проекции, и этот способ я бы советовал только людям с хорошим уровнем подготовки.
3) Изобразить только проекцию. Тоже неплохо, но тогда обязательны дополнительные письменные комментарии, чем ограничена область с различных сторон. К сожалению, третий вариант зачастую бывает вынужденным – когда тело слишком велико либо его построение сопряжено с иными трудностями. И такие примеры мы тоже рассмотрим.
4) Обойтись вообще без чертежей. В этом случае нужно представлять тело мысленно и закомментировать его форму/расположение письменно. Подходит для совсем простых тел либо задач, где выполнение обоих чертежей затруднительно. Но всё же лучше сделать хотя бы схематический рисунок, поскольку «голое» решение могут и забраковать.
Следующее тело для самостоятельного дела:
Пример 2
С помощью тройного интеграла вычислить объем тела, ограниченного поверхностями
В данном случае область интегрирования задана преимущественно неравенствами, и это даже лучше – множество неравенств задаёт 1-й октант, включая координатные плоскости, а неравенство
– полупространство, содержащее начало координат (проверьте) + саму плоскость. «Вертикальная» плоскость
рассекает параболоид по параболе и на чертеже желательно построить данное сечение. Для этого нужно найти дополнительную опорную точку, проще всего – вершину параболы (рассматриваем значения
и рассчитываем соответствующее «зет»).
Примерный образец оформления задачи в конце урока.
Продолжаем разминаться:
Пример 3
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Выполнить чертёж.
Решение: формулировка «выполнить чертёж» даёт нам некоторую свободу, но, скорее всего, подразумевает выполнение пространственного чертежа. Однако и проекция тоже не помешает, тем более, она здесь не самая простая.
Придерживаемся отработанной ранее тактики – сначала разберёмся с поверхностями, которые параллельны оси аппликат. Уравнения таких поверхностей не содержат в явном виде переменную «зет»:
– уравнение задаёт координатную плоскость
, проходящую через ось
(которая на плоскости
определяется «одноимённым» уравнением
);
– уравнение задаёт плоскость, проходящую через «одноимённую» «плоскую» прямую параллельно оси
.
Но две прямые не задают ограниченную проекцию, и, очевидно, её должны «прорисовать» линии, по которым параболический цилиндр
пересекает плоскость
. Чтобы найти уравнения этих линий нужно решить простейшую систему:
Подставим в первое уравнение:
– получены две прямые, лежащие в плоскости
, параллельные оси
.
Изобразим проекцию тела на плоскость :
Ещё раз призываю! – если остаётся какое-то недопонимание по выполнению чертежей и/или объяснениям, обращайтесь к справочной статье Основные поверхности пространства и в тяжёлом случае – к урокам Уравнение прямой на плоскости, Уравнение плоскости.
Искомое тело ограниченно плоскостью снизу и параболическим цилиндром
сверху:
Составим порядок обхода тела, при этом «иксовые» и «игрековые» пределы интегрирования, напоминаю, удобнее выяснять по двумерному чертежу:
Таким образом:
1)
2)
При интегрировании по «игрек» – «икс» считается константой, поэтому константу целесообразно сразу вынести за знак интеграла.
3)
Ответ:
Да, чуть не забыл, в большинстве случаев полученный результат малополезно (и даже вредно) сверять с трёхмерным чертежом, поскольку с большой вероятностью возникнет иллюзия объёма, о которой я рассказал ещё на уроке Объем тела вращения. Так, оценивая тело рассмотренной задачи, лично мне показалось, что в нём гораздо больше 4 «кубиков».
Следующий пример для самостоятельного решения:
Пример 4
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскость .
Примерный образец оформления задачи в конце урока.
Не редкость, когда выполнение трёхмерного чертежа затруднено:
Пример 5
С помощью тройного интеграла найти объём тела, заданного ограничивающими его поверхностями
Решение: проекция здесь несложная, но вот над порядком её обхода нужно подумать. Если выбрать 1-й способ, то фигуру придётся разделить на 2 части, что неиллюзорно грозит вычислением суммы двух тройных интегралов. В этой связи гораздо перспективнее выглядит 2-й путь. Выразим и изобразим проекцию данного тела на чертеже:
Прошу прощения за качество некоторых картинок, я их вырезаю прямо из собственных рукописей.
Выбираем более выгодный порядок обхода фигуры:
Теперь дело за телом. Снизу оно ограничено плоскостью , сверху – плоскостью
, которая проходит через ось ординат. И всё бы было ничего, но последняя плоскость слишком крутА и построить область не так-то просто. Выбор тут незавиден: либо ювелирная работа в мелком масштабе (т.к. тело достаточно тонкое), либо чертёж высотой порядка 20 сантиметров (да и то, если вместится).
Но есть и третий, исконно русский метод решения проблемы – забить =) А вместо трёхмерного чертежа обойтись словесным описанием: «Данное тело ограничено цилиндрами и плоскостью
сбоку, плоскостью
– снизу и плоскостью
– сверху».
«Вертикальные» пределы интегрирования, очевидно, таковы:
Вычислим объём тела, не забывая, что проекцию мы обошли менее распространённым способом:
1)
2)
3)
Ответ:
Как вы заметили, предлагаемые в задачах тела часто ограничены плоскостью снизу. Но это не есть какое-то правило, поэтому всегда нужно быть начеку – может попасться задание, где тело расположено и под плоскостью
. Так, например, если в разобранной задаче вместо
рассмотреть плоскость
, то исследованное тело симметрично отобразится в нижнее полупространство и будет ограничено плоскостью
снизу, а плоскостью
– уже сверху!
Легко убедиться, что получится тот же самый результат:
(помним, что тело нужно обходить строго снизу вверх!)