Описание объекта исследования




Задачи.

Ознакомиться с различными источниками литературы.

Дать понятие скорости химической реакции.

Найти и разработать методики, позволяющие выяснить влияние на скорость химической реакции:

катализатора;

температуры;

концентрации вещества;

площади соприкосновения;

природы реагирующего вещества.

Провести практическую часть исследования согласно выбранным методикам.

Проанализировать полученный результат и сформировать выводы.

Объект исследования: скорость химической реакции.

Предмет исследования: влияние катализаторов, температуры, концентрации вещества, площади соприкосновения, природы реагирующего вещества и давления.

Методы исследования: анализ литературы, обобщение, сравнение, формулирование выводов, измерение, эксперимент, наблюдение.

Практическая значимость: Разработанные методики позволят сделать уроки химии более интересными и «выйти» за рамки школьного курса для расширения кругозора учащихся.

 

Описание объекта исследования

 

Вначале давайте разберемся, что же такое скорость химической реакции. Когда кроликов в клетке вместо свежего сена начинают кормить морковкой, прожорливые животные быстро справляются с огромным количеством пищи. «Скорость еды» определить легко: надо просто знать, сколько моркови убавилось в кормушке за определенный промежуток времени, например за час. Правда и есть другой путь – взвесить кролика перед кормежкой и подсчитать прибавку веса в единицу времени. Но в химии мы имеем дело с частицами, а пересчитать частицы – дело очень трудоемкое. Поэтому такой путь для определения скорости химической реакции неприемлем. С понятием «скорость химической реакции» мы встречались в математике и физике, определить ее можно как отношение пройденного телом пути к времени (υ = s/t).

Подходит ли нам эта формула для определения скорости химической реакции? Конечно, нет. Ведь измерить пройденный путь реакции не удастся.

Скорость – это изменение некоторой величины во времени. Рассмотрим реакцию образования йодоводорода: H2 + I2 = 2HI и попробуем определить скорость этой реакции по расходованию реагентов в единицу времени. Например, так: υ (H2) = m (H2) / ∆ t, v(I2) = m(I2)/∆t, где υ – скорость реакции, m – убыль массы соответствующего реагента, t – отрезок времени. Но υ(H2) не равно υ(I2). Ведь массы водорода и иода, прореагировавших в единицу времени, не равны. Реакция идет в мольном соотношении 1:1, а не в массовом!

Попробуем по-другому: υ (H2) = n (H2)/∆t, υ (I2) = n (I2)/∆t, взяв вместо масс количества веществ. Теперь υ (H2) = υ (I2).

Но если в первом случае мы возьмем убыль числа молей в единицу времени в 1 мл смеси, а во втором – в 1 л смеси, то скорости снова не будут равны! Они зависят от объема. Если проводить одну и ту же реакцию в маленькой пробирке и в большой бочке, то в пробирке прореагирует меньшее количество вещества – просто потому, что там меньше реагента.

А если привести эти выражения к единице объема? υ (H2) = n (H2) / V* ∆t = ∆c (H2) / ∆t, υ (I2) = n (I2) / V * ∆t=∆c (I2) / ∆ t, где ∆c – изменения молярных концентраций соответствующих веществ. Тогда υH2 = υ I2 = υ данной реакции! Таким образом, конечное определение будет: скорость химической реакции – это изменение молярной концентрации одного из участвующих в реакции веществ в единицу времени: v = c/t [моль / литр*сек].

Следовательно, чтобы определить, с какой скоростью протекает химическая реакция, нужно знать: а) какое количество вещества (моль) образуется (для продукта реакции) или расходуется (для исходного вещества); б) за какое время происходит этот процесс; в) в каком объеме протекает реакция.

Но данное определение справедливо для гомогенных реакций. Гомогенные реакции бывают такими:

во-первых, это реакции взаимодействия газов с получением газообразных продуктов, например, реакция водорода и кислородом с получением водяного пара: 2Н2 (г)+ О2 (г) = 2 Н2О (г).

во-вторых, взаимодействие веществ в растворе с образованием продуктов, тоже хорошо растворимых, например взаимодействие гидросульфата натрия с гидроксидом натрия и воды:

NaHSO4 + NaOH = Na2SO4 + 2 H2O

Совсем иначе обстоят дела с гетерогенными реакциями – в тех случаях, когда реагирующие вещества отделены друг от друга «границей фаз». Например, твердого вещества и газа: S + O2 = SO2; твердого вещества и жидкости: Fe + 2HCl = FeCl2 + H2; двух несмешивающихся жидкостей: C3H7Br + KCN (водн.) = C3H7CN + KBr(водн.).

Скорость гетерогенной реакции определяется как изменение количества вещества в единицу времени на единицу поверхности:

 

Раздел химии, изучающий скорость химической реакции, называют химической кинетикой.

От чего же зависит скорость реакции?

В первую очередь – от природы веществ: одни вещества реагируют мгновенно, другие – медленно.

Затем – от концентрации реагентов: чем она больше, тем чаще будут сталкиваться частицы.

В-третьих, повышение температуры также будет ускорять реакцию: чем выше температура, тем легче частицам образовывать активированный комплекс и преодолеть энергетический барьер.

Для гетерогенных реакций самый важный фактор – площадь контакта реагентов (она

напрямую зависит от степени измельчения).

Наконец, в присутствии веществ-катализаторов тоже достигается рост скорости реакции.

Рассмотрим более подробно каждый из факторов.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-07 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: