Основные характеристики ракетных комплексов подводных лодок с баллистическими ракетами




Наименование ракеты Р-11ФМ Р-13 Р-21 РСМ-25 РСМ-40 РСМ-50 РСМ-52 РСМ-54
Год принятия на вооружение                
Стартовый вес (т) 5,47 13,74 19,63 14,3 33,3 35,3 90,1 40,3
Забрасываемая масса (кг)                
Длина х диаметр ракеты (м) 10,3х0,88 11,8х1,3 14,2х1,3 9,06х1,5 13,0х1,8 14,6х1,8 16,0х2,4 14,8х1,9
Тип двигательной установки ЖРД ЖРД ЖРД ЖРД ЖРД ЖРД РДТТ ЖРД
Количество ступеней                
Тип системы управления инерциальная астроинерциальная астрорадиоинерциальная
Тип головной части МГЧ МГЧ МГЧ МГЧ и кассетная ГЧ МГЧ МГЧиРГЧ РГЧ РГЧ
Максимальная дальность стрельбы (км)         межконтинентальная
Тип амортизации ракеты рычажно-пружинная резино-металлическая амортизационная ракетно-стартовая система резино-металлическая
Вид предстартовой подготовки ручная автоматизированная
Положение ПЛ при пуске ракеты надводное подводное подводное и надводное
Волнение моря при старте ракеты (баллы) до 4-5 до 5 всепогодный пуск ракеты
Тип подводной лодки АВ611, 629 629, 658 629А, 658М 667А, 667АУ 667Б, 667БД 667БДР   667БДРМ
Количество ракет на ПЛ 2,3       12,16      

В 1961г. началась разработка твердотопливной морской баллистической ракеты. Однако состояние и возможности отечественного твердотопливного двигателестроения того времени, с одной стороны, а также требование улучшения тактико-технических характеристик ракетного оружия - с другой, не позволили в полной мере реализовать поставленные задачи: работы над морской ракетой были доведены до огневых стендовых испытаний ее двигателей и первого летно-конструкторского испытания макета ракеты с плавучего стенда для отработки способа пуска (на вооружение была принята только сухопутная ракета).

В начале работ над ракетами подводных лодок второго поколения были получены существенные результаты в области жидкостного двигателестроения, создания бортовых и корабельных систем управления, гироприборов, боезарядов, боеголовок. Среди множества проблем, которые тогда возникли, наиболее сложными были: достижение приемлемых габаритов ракеты при существенном росте тактико-технических характеристик, создание принципиально новых малогабаритных пусковых установок и качественно новых двигательных установок, достижение существенного прогресса в боевых блоках, бортовых и корабельных системах управления, автоматизация обслуживания, подготовки старта и залповой стрельбы боекомплекта ракет, реализация заводской заправки ракет топливом с ампулизацией баков, эксплуатация на флотах заправленных ракет, обеспечение всепогодности боевого применения и готовности к применению в любое время в любой точке Мирового океана и др. Все эти проблемы были решены при создании одноступенчатой (РСМ-25) и двухступенчатой (РСМ-40) ракет, которые стали основой для развития отечественного морского ракетного оружия.

Можно определенно утверждать, что в 1961-1962гг. было не только заложено новое поколение баллистических ракет подводных лодок, но и сформировано новое направление отечественного ракетостроения, созданы основы школы морского ракетостроения, во главе которой стоял В.П.Макеев. Оригинальность и системность технических решений, их многоплановость и способность к адаптации к изменяющимся требованиям, предельное внимание к проблемам безопасности и надежности, создание стройной системы наземной отработки и летных испытаний, постоянное совершенствование тактико-технических характеристик и эксплуатационных качеств, неизменная атмосфера доверительности и творческого сотрудничества в кооперации разработчиков, постоянные и плодотворные связи с научными организациями и высшими учебными заведениями отличали и отличают работу макеевской школы морского ракетостроения.

Среди решенных проблем и разработанных направлений следует отметить центральные, которые не только сформировали облик ракет второго поколения, но и определили на многие годы пути развития морских комплексов. Прежде всего, речь идет о пионерских конструктивно-компоновочных схемных решениях по ракете, связанных с практически полной ликвидацией объемов ракеты, не залитых топливом, с совмещением функций нескольких традиционных элементов в одном, внедрением нетрадиционных схем нагрузки конструкций.

Основным решением, кардинально сократившим габариты ракеты, было введение “утопленной схемы” двигательной установки - расположение двигателей в баках горючего или окислителя. Это предложение было выработано в КБ химического машиностроения, которым руководил А.М.Исаев, совместно с КБ В.П.Макеева. Оно привело к сокращению габаритов ракеты, ликвидации на ракете сухих отсеков для размещения двигательных установок, были созданы двигатели нового класса: без какого-либо обслуживания после изготовления, без каких-либо разъемных соединений и вместе с тем имеющие новый более высокий уровень энергомассовых характеристик. Такой же пример научно обоснованного и системного проектирования дали решения по цельносварным корпусам многоступенчатых ракет, по размещению рулевых приводов в компоненте топлива, использованию “вафельных” оболочек, созданию неразъемных переходников от стальных элементов двигателя к алюминиевому корпусу ракеты, а также решения вопросов качания камер сгорания, расположенных в компоненте топлива, разделения сваренных ступеней и их отделения без специальных механизмов. При разработке принципиально нового корпуса малогабаритной ракеты, выдерживающего повышенные перегрузки и избыточное наружное давление, были созданы предпосылки для проектирования новых ракетно-стартовых систем при совместной компоновке ракеты и пусковой установки.

Исходя из отмеченных ранее недостатков стартовых систем первого поколения, коренному пересмотру подверглась вся концепция проектирования ракетно-стартовых систем, а разработку собственно пусковых установок взяло на себя головное КБ В.П.Макеева. В основу дальнейших разработок были положены принципиально иные решения: вместо жесткого крепления ракеты относительно пусковой шахты она свободно подвешивалась в шахте на упругих связях с нелинейными силовыми характеристиками, при этом допускались колебания относительно шахты при эксплуатации; вместо передачи на ракету нагрузок в виде точечных сил через специальные устройства было предложено распределить эти силы по нескольким кольцевым зонам, расположенным на разных уровнях по длине ракеты, с использованием резинометаллических амортизаторов; вместо направления движения ракеты при погрузке и старте с помощью пары бугель-направляющих стали использовать для этих целей либо внутреннюю стенку шахты, либо непосредственно оболочку ракеты.

Суммарный эффект был весьма высоким. Кольцевой зазор и масса пусковой системы уменьшились на порядок, а ракета соответственно увеличилась почти до размеров самой пусковой шахты; огромные цистерны кольцевого зазора уменьшились во много раз, а заполнение кольцевого зазора перестало лимитировать время предстартовой подготовки, в результате чего сократились послестартовый разбаланс подводной лодки и его влияние на скорострельность.

Принципиальным для морских ракетных комплексов явились обеспечение высокой точности стрельбы и подготовка полетного задания при стрельбе по любому направлению, в любое время, из любой точки океана в пределах досягаемости ракет. Особенность этой задачи - специфические требования к системам управления для морских комплексов: старт ракеты с подвижного основания с ненулевыми начальными условиями при весьма неблагоприятных динамических характеристиках ракеты как объекта управления. При этом комплекс должен обладать свойствами всепогодности и инвариантности к месту старта, а также, в определенных пределах, к точности знания азимутального направления. Аппаратура управления должна также обеспечивать практически автоматическое проведение регламентных проверок, предстартовой подготовки и старта всех ракет, предназначенных к пуску (до полного боекомплекта лодки).

В 60-е годы попытки решения возложенных на систему управления функций и задач с помощью аналоговой аппаратуры, а также уровень развития навигационного обеспечения подводных лодок не оставляли никаких надежд на успешное их осуществление и реализацию приемлемой точности стрельбы для ракет средней, а тем более межконтинентальной дальностей стрельбы. Выход был найден. Это разработка и применение на борту ракеты прецизионных гироскопических устройств, работающих в вакууме, а также системы астрокоррекции, переход от аналоговых к цифроаналоговым и затем полностью к цифровым системам с применением высокопроизводительных малогабаритных бортовых цифровых вычислительных комплексов и корабельных цифровых вычислительных систем со специальным математическим обеспечением. Внедрение коррекции траектории по внешним ориентирам стало этапным и приоритетным для боевых ракет решением.

В итоге предстартовая подготовка и залповая стрельба боекомплектом ракет стали осуществляться централизованно: одним оператором с пульта управления ракетным оружием, единым автоматизированным комплексом систем управления, включающим саму систему управления, корабельную цифровую вычислительную систему, систему прицеливания и аппаратуру управления корабельными системами повседневного и предстартового обслуживания.

Помимо роста эффективности и боевых возможностей морских ракет второго поколения, другое важное достижение - скачок в эксплуатационных качествах жидкостных ракет. Среди множества технических решений, обеспечивающих этот скачок, главным является заводская заправка ракеты топливом, завершающаяся ампулизацией баков путем заварки заправочных клапанов. Она обеспечила существенный рост гарантийных сроков эксплуатации и обусловила экологическое совершенство морских ракет, поскольку исключила заправочные работы на флотах и возможные при этом проливы компонентов.

Успешному решению технолого-производственных задач, которые позволили разработать и внедрить заводскую заправку и ампулизацию ракет, перспективные методы формообразования и механической обработки “вафельных” оболочек и других корпусных деталей ракет, аргонодуговую и электронно-лучевую сварки, прочно-плотные соединения разнородных металлов, высокоэффективные композиционные материалы, способствовало тесное взаимодействие разработчиков со Златоустовским машиностроительным заводом (директора В.Н.Коновалов и В.Х.Догужиев), Красноярским машиностроительным заводом (директора В.П.Котельников и В.К.Гупалов), Омским авиационным заводом (директор С.С.Бовкун).

Комплексы с ракетами РСМ-25 средней дальности и РСМ-40 межконтинентальной дальности стрельбы были приняты на вооружение ВМФ соответственно в 1968 и 1974гг. и до конца 70-х годов составляли основу морских стратегических ядерных сил. Ими были вооружены подводные лодки “Навага” и “Мурена”. При их создании был достигнут мировой приоритет в межконтинентальной дальности стрельбы морских ракет и в применении астрокоррекции на боевых ракетах. В 1980г. был создан комплекс с первой морской твердотопливной моноблочной ракетой РСМ-45 средней дальности стрельбы разработки главного конструктора П.А.Тюрина (КБ “Арсенал” им. М.В.Фрунзе). Комплекс в течение 10лет находился в опытной эксплуатации на подводной лодке.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: