Расчет фрикционных передач




 

Рассмотрим фрикционную передачу с цилиндрическими катками

(рис.4, а). При проектировании для катков выбирают материалы, обладающие достаточно большими значениями коэффициента трения скольжения и модуля упругости, износостойкостью. Чаще всего применяют стали, текстолит, резину. Значения коэффициентов трения f некоторых пар материалов, параметров их износостойкости приведены в табл. 1.

 

Таблица 1

Материал катков Условия боты Коэффициент трения, f Допускаемые удельные нагрузки qadm, кН/м Допускаемые контактные напряжения σHadm, МПа
Сталь по стали В масле 0,05   (2,5 … 3)НВ
Сталь по стали Всухую 0,1 … 0,15   (1,2 … 1,5)НВ
Текстолит по стали Всухую 0,2 … 0,25 40 … 80  
Резина по стали Всухую 0,45 … 0,6 10 … 30  

 

Обычно известна величина момента сил сопротивления М2, действующего на ведомое звено 2, или окружная сила сопротивления F2 = 2М2/d2, где d2 – диаметр ведомого катка. Движение между звеньями передается за счет сил трения Fтр. Для ее создания ведущее 1 и ведомое 2 звенья прижимаются друг к другу с помощью пружин, сил веса, сил электромагнитного поля и т.п. Иногда фрикционные передачи снабжают устройствами автоматического регулирования силы нажатия F катков друг на друга. Сила нажатия F определяется из условия отсутствия буксования, когда сила трения Fтр больше окружной силы сопротивления F2, т.е. Fтр = kF2, где k – коэффициент запаса сцепления; для приборных передач k = 2 … 3 и для силовых – k = 1,25 … 1,5. С учетом зависимости Fтр = fF сила нажатия цилиндрических катков при отсутствии буксования должна быть равна

F = (F2k)/f = (2M2k)/(fd2). (8)

На поверхности циклически изменяющейся зоны соприкосновения катков возникают значительные контактные напряжения. Основной причиной повреждения является разрушение рабочих поверхностей соприкасающихся катков. При использовании металлических катков на их рабочих поверхностях возникают ямки выкрашивания вследствие контактной усталости. При использовании неметаллических катков происходит износ и отслаивание материала на этих звеньях.

При определении диаметров ведущего d1 и ведомого d2 катков, их ширины b, помимо известных параметров выбранных материалов катков (f, E1, E2, qadm, σHadm) и момента сил сопротивления М2, известно передаточное отношение i рассматриваемой фрикционной передачи.

Выразим геометрические параметры катков через межосевое расстояние а передачи. Из выражения а = (d1 + d2)/2 = [d1(i + 1)]/2, где d2 = id1 выразим диаметры катков:

d1 = 2 a /(i + 1); d2 = 2 а i/(i + 1).(9)

Ширину катков b определим по эмпирической зависимости

b = ψ· a, (10)

где ψ = 0,2 … 0,4 – коэффициент ширины.

При наличии неметаллических катков условие их прочности с учетом износостойкости примет вид

qmax = F/b ≤ qadm, (11)

где qmax, qadm – соответственно максимальное и допускаемое удельные нагрузки на поверхности неметаллического катка в кН/м (табл. 1).

Выражение (11) с учетом зависимостей (8), (9), (10) примет вид

q = [M2(i + 1)k]/(a 2iψf) ≤ qadm, (12)

откуда а . (13)

Зная межосевое расстояние а передачи, определим, используя зависимости (9) диаметры d1 и d2 катков, используя зависимость (10) – ширину b катков; и зависимость (8) – силу F прижатия катков.

При наличии во фрикционном механизме только металлических катков условие прочности их должно учитывать контактные напряжения, определяемые по формуле Герца (5.89), а именно

, (14)

где σHmax, σHadm – соответственно максимальное и допускаемое контактные напряжения; q = F/b – удельное давление; Eп = 2E1E2/(E1 + E2) – приведенный модуль упругости материалов катков; ρп = d1d2/[2(d1 + d2)] = (a i)/(i + + 1)2 – приведенный радиус кривизны соприкасающихся катков.

Подставив в уравнение (14) значения удельной нагрузки q из выражения (12) и приведенного радиуса кривизны ρп катков получим

, (15)

откуда а . (16)

Далее, зная межосевое расстояние а определим, используя зависимости (8), (9), (10) параметры фрикционной передачи

Фрикционные механизмы применяются в приводах систем, в устройствах транспортирования различных носителей информации. Передача движения в них осуществляется за счет сил трения между звеньями.


Зубчатые механизмы

Общие сведения

 

Зубчатые механизмы чаще по сравнению с другими видами механизмов применяются в машиностроении, приборостроении, в технических системах. Они служат для преобразования вращательного движения ведущего звена и передачи моментов сил.

Достоинствами таких передач являются постоянство заданного передаточного отношения, компактность, высокий КПД (0,92 … 0,98); наличие небольших сил давления на валы и опоры; высокая надежность; простота обслуживания. К недостаткам можно отнести сложность и высокую точность изготовления и сборки, наличие шума при работе, невозможность плавного бесступенчатого регулирования скорости вращения ведомого звена.

Все понятия, параметры и их обозначения, относящиеся к геометрии и кинематике зубчатых передач, стандартизированы.

Меньшее из пары зубчатых колес принято называть шестерней, большее – колесом. Термин «зубчатое колесо» можно применять как к шестерне, так и к колесу зубчатой передачи. Индексы «1» и «2» присваивают соответственно параметрам шестерни и колеса.

Зацепление зубчатых колес можно кинематически представить как качение без скольжения друг по другу двух поверхностей, называемых начальными. Для цилиндрических передач это цилиндры, для конических – конусы. Точку качения начальных поверхностей определяют как полюс зацепления.

По числу пар зацепляющихся колес зубчатые передачи бывают одно-, двух- и многоступенчатыми. По взаимному расположению осей их делят на цилиндрические – с параллельными осями (рис. 5, а), конические – с пересекающимися осями (рис. 5, д), на червячные (рис. 3.5, з), винтовые (рис. 5, и) – со скрещивающимися в пространстве осями. По расположению зубьев относительно образующих начальной поверхности колеса зубчатые передачи делят на прямозубые (рис. 5, а) и косозубые (рис. 5, б, в), шевронные (рис. 5, в) и с круговым зубом (рис. 5, ж).

Прямозубыми называются колеса (передачи), направление каждого зуба которых совпадает с образующей начальной поверхности (цилиндра или конуса). Косозубыми называются зубчатые колеса, направление каждого зуба которых составляет некоторый постоянный угол с образующей начальной поверхности. Шевронными называются колеса (рис. 5, в), зубчатый венец которых образуется из двух рядов косых зубьев противоположного направления.

Конические колеса могут быть прямозубыми, косозубыми и с круговым зубом

(рис.5, д, е, ж).

Зацепление зубчатых колес может быть внешним и внутренним

(рис.5, г).

Реечные зубчатые передачи (рис. 5, к) преобразуют вращательное движение в поступательное или наоборот.

 

г
в
а
б

д е ж

к

з и

Рис. 5

 

Наибольшее распространение получили передачи с эвольвентным профилем зубьев. Во-первых, эвольвентное зацепление мало чувствительно к отклонениям межосевого расстояния, не нарушается правильность зацепления. Во-вторых, профиль зубьев инструмента для нарезания эвольвентных зубчатых колес может быть прямолинейным, сравнительно простое изготовление и контроль инструмента и колес, одним инструментом можно нарезать колеса с разным числом зубьев. Траекторией точки контакта эвольвентных профилей зубьев является прямая линия.

По конструктивному выполнению корпуса зубчатые передачи бывают открытыми и закрытыми. Открытые не имеют защиты от попадания пыли и грязи, закрытые передачи имеют жесткий корпус и работают в масляной ванне.

По характеру своей работы передачи могут быть реверсивные и нереверсивные. Реверсивные передачи характеризуются поочередным изменением на противоположное направления движения ведущего звена.

По величине окружной скорости различают передачи – тихоходные (до 3 м/с), средних скоростей (3 … 15 м/с) и быстроходные (свыше 15 м/с).

Отношение угловых скоростей ведущего и ведомого колес называют передаточным отношением i, а отношение числа зубьев колеса к числу зубьев шестерни – передаточным числом u. Для редукторов (замедляющих передач) абсолютные значения i и u совпадают. Передаточное число относится только к паре зубчатых колёс, оно всегда положительное, больше единицы и является частным случаем передаточного отношения. Число зубьев колес обозначают буквой z с индексом, соответствующим индексу колеса. Основной характеристикой размеров зубьев является модуль m – отношение окружного шага к числу π. Модули стандартизированы и имеют размерность в миллиметрах. Зубчатые колеса (передачи) с модулем m < 1 называют мелкомодульными.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: