1. Электроемкость
На предыдущих уроках мы знакомились с элементарными электрическими понятиями и принципами, в частности, мы говорили об электризации – явлении перераспределения заряда. Разговор о более глубоком исследовании этого явления начнем с опыта.
Изначально пусть нам даны две разные по размеру изолированные банки, подключенные к электроскопу (рис. 1):
Рис. 1
Теперь к каждой из банок поднесли одинаково заряженное тело. Естественно, с каждой банкой произойдет процесс электризации, и стрелки обоих электроскопов разойдутся. Однако оказалось, что электроскоп большей банки показал меньшее отклонение (рис. 2):
Рис. 2
Данный опыт доказывает, что различные тела электризуются одним и тем же зарядом по-разному (конкретно большая банка одним и тем же зарядом зарядилась до меньшего потенциала). И существует некоторая величина, которая показывает способность тела накапливать электрический заряд. Собственно, о ней и пойдет речь.
Определение. Электроемкость (емкость) – величина, равная отношению заряда переданного проводнику к потенциалу этого проводника.
Здесь: – емкость; – переданный заряд; – потенциал, до которого зарядился проводник.
2. Конденсаторы
Теперь непосредственно познакомимся со специализированными приборами для накопления зарядов.
Определение. Конденсатор – набор проводников, служащий для накопления электрического заряда. Конденсаторы состоят из двух проводников и разделяющего их диэлектрика, причем толщина диэлектрического слоя много меньше размеров проводников (рис. 3).
Рис. 3. Схематическое изображение конденсатора (Источник)
Особое внимание мы будем уделять так называемым плоским конденсаторам (слой диэлектрика расположен между двумя плоскими пластинами проводника). На электрической схеме конденсатор обозначается следующим образом (рис. 4):
|
Рис. 4. Условное обозначение конденсатора на электрической схеме
Емкость конденсатора определяется так же, как и любая другая электроемкость, однако с небольшим отличием (так как речь идет о системе проводников, а не о отдельно взятом проводнике, в формуле фигурирует не потенциал, а разность потенциалов или напряжение)
Здесь: – заряд на обкладках конденсатора (так называются проводники, из которых состоит конденсатор); – напряжение между обкладками конденсатора.
Единица измерения емкости: Ф – фарад
Однако, конечно же, емкость конденсатора – не постоянная величина, она зависит от конструкторских особенностей самого конденсатора. В случае плоского конденсатора эта зависимость имеет следующий вид:
Здесь: – диэлектрическая проницаемость среды; – электрическая постоянная; – площадь обкладки конденсатора; – расстояние между обкладками.
В конденсаторах роль диэлектрической прослойки, как правило, выполняет пропитанная соответствующим составом бумага, расположенная между двумя тонкими листами металла (рис. 5).
Рис. 5. Устройство конденсатора (Источник)
Конденсаторы можно разделить на три основных типа:
Конденсатор постоянной емкости – это свернутая в рулон упомянутая выше трехслойная лента (две ленты проводника и лента диэлектрика между ними). Конденсаторы переменной емкости – приборы, используемые в радиотехнике, позволяющие регулировать параметры, от которых зависит емкость – ширина пластин и расстояние между ними (рис. 6). Батарея же конденсаторов – это несколько конденсаторов, связанных по определенной схеме.
|
Рис. 6. Модель конденсатора переменной емкости (Источник)
Домашнее задание
1. Прочитать конспект
2. Решить задачи:
- Во сколько раз изменится емкость конденсатора, если листовую слюду заменить парафином той же толщины?
- Какую площадь должны иметь пластины плоского конденсатора, для того чтобы его электроемкость была равна 1 пФ? Расстояние между пластинами – 0,5 мм.