Оценка технологичности объекта сборки




 

Технологичность конструкции – совокупность свойств конструкции изделия, позволяющих оптимизировать материальные и трудовые затраты в установленные сроки подготовки производства, изготовления, эксплуатации и ремонта при обеспечении заданных показателей качества изделия и принятых условиях изготовления, эксплуатации и ремонта. Технологичность закладывается при проектировании изделия и во многом определяет содержание частных технологических процессов, как изготовления деталей, так и сборки узлов, агрегатов и самолёта в целом.

Различают производственную и эксплуатационную технологичность. Производственная технологичность проявляется в экономии затрат на конструкторскую и технологическую подготовку производства и изготовление изделий. Эксплуатационная технологичность обеспечивает снижение затрат на техническое обслуживание и ремонт изделий, а также на подготовительные и заключительные работы, связанные с полётом.

Наиболее существенно влияют на показатели технологичности следующие факторы, дающие качественную оценку технологичности:

1. Простота геометрических форм сборочной единицы

2. Рациональность членения на узлы и под узлы

3. Вид и конструкция стыковых узлов, способ соединения элементов конструкции

4.Номенклатура используемых материалов, их технологические свойства

5.Унификация элементов конструкции, их параметров

6.Отсутствие чрезмерно высоких требований к точности

7.Обеспечение доступа в зону соединений для удобства их выполнения и возможности автоматизации или механизации

Затем рассчитываются количественные показатели технологичности. Важнейшими из них являются те, которые оценивают трудоёмкость и технологическую себестоимость.

1.Показатель уровня технологичности

 

= (1.1)

где - трудоёмкость по новому т.п. и базовому, н-ч;

Если Кут меньше единицы, то конструкция технологична.

2.Коэффициент удельной трудоёмкости

 

= =1,8 (1.2)

 

где - трудоёмкость, н-ч;

- масса объекта сборки, кг.

Снижение показателя КТ делает конструкцию более технологичной

3.Коэффициент монолитности

 

= (1.3)

 

где - масса, кг

- число деталей (кроме крепежа), шт.

Чем выше Km тем более технологичен объект сборки.

 


1.5 Экономическое обоснование

 

Согласно базовому варианту технологического процесса отверстия под втулки сверлятся и зенкеруются в сборочном приспособлении кухонной секции, с применением ручного пневмо-инструмента. В новом технологическом процессе в приспособление подаются отдельные панели с готовыми отверстиями. В результате сокращается время стапельной сборки. Необходимо выбрать из этих двух вариантов оптимальный, для чего и проводится расчёт экономической эффективности.

Исходные данные для расчёта экономического эффекта

 

Таблица 1.1

№ п/п Наименование показателей, еденица измерения Усл. обознач. Базовый вариант тп Новый вариант тп
1. Программа выпуска,ед.    
2. Трудоёмкость изготовления объекта сборки всего, н-ч.    
2.1 Операции установки    
2.2 Сверление, зенкование    
2.3 Клейка    
3. Разряд работы -    
4. Тарифная ставка, руб.    
5. Коэффициент, учитывающий начисления на зарплату 0,48 0,48
6. Коэффициент загрузки оборудования 0.85 0.85
7. Годовой фонд времени работы оборудования, ч.    
8. Норма амортизационных отчислений %    
13. Производственная площадь на одно рабочее место,м2 - 4,0 4,0
14. Стоимость 1 м2 производственной площади, руб.    

 

Ряд показателей таблицы 1.1 требуется предварительно просчитать. Прежде всего это относится к расчёту трудоёмкости, что необходимо провести по каждой операции сравниваемых вариантов. Для расчёта трудоёмкости необходимо сложить штучное время по каждой операции технологического процесса.

 

(1.4)

 

где - штучное время на выполнение операции

- оперативное время выполнения сборочных операций

 

(1.5)

 

где - основное время, необходимое непосредственно на сверление отверстия, зенкерование гнезда под втулки, установку и осадку стержня заклёпки;

- вспомогательное время (на перемещение инструмента, на перемещение объекта сборки относительно инструмента на шаг между отверстиями и т.п.

Загрузку оборудования принимаем соответственно типу производства:

для серийного производства 0,75-0,85.

Экономический эффект от снижения подгоночных работ:

По данным полученным в ходе прохождения 2-ой производственной практики

Сокращение трудоемкости сборки составит 60н/ч.

 

Э =60*12=720н/ч в год

Э =720*12,5=9000 руб.

 


2. КОНСТРУКТОРСКАЯ ЧАСТЬ

 

2.1 Требования, предъявляемые выклеечной технологической оснастки

 

1. Выклеечная форма должна иметь жесткость, обеспечивающая получение конструкции заданной формы и размеров. Требования по жесткости оцениваются путем максимально допустимых деформаций.

2. Конструкция выклеечной формы и цулаги должна обеспечивать многократное формование авиационной конструкции из ПКМ в условиях печи и автоклава.

 

t=130-170

Pmax=1.0 МПа

 

Под многократности понимается изготовление 40-50 конструкций до ремонта и 100-200 конструкций до выхода из строя.

3. Выклеечная форма должна иметь минимум массы с целью сокращения времени нагрева и охлаждения, а также для равномерного нагрева и повышению качества ПКМ. Относительная масса выклеечной формы не должна превышать 100 кг/м.

4. Поверхность выклеечной формы должна обладать герметичностью при условиях формования ПКМ.

Не герметичность выклеечной формы может привести к снижению уровня вакуума в технологическом пакете и как следствие уменьшения формующего давления, что уменьшает прочность ПКМ.

5. Выклеечная форма и цулаги должна обеспечивать равномерное распределение формующего давления по всей поверхности конструкции ПКМ.

6. Шероховатость рабочей поверхности должна быть на класс выше, чем требуемая шероховатость авиационной конструкции из ПКМ.

7. Коэфициент теплового расширения, материал из которого изготавливается выклеечная форма, должен быть близок или равен коэффициенту теплового расширения материала формуемой конструкции.

8. Поверхность выклеечной формы должна иметь возможность по нанесению антиадгезионного покрытия для исключения приклейки конструкции из ПКМ поверхности выклеечной формы.

 

2.2 Этапы проектирования выклеечной формы

 

1. Выбор базовой плоскости.

Выбор базовой плоскости должен обеспечить горизонтальное положение изготавливаемой конструкции с целью уменьшения размеров выклеечной формы, а также для исключения перемещения полимерного связующего.

2. Выбор габаритных размеров выклеечной формы.

Размеров выклеенной формы определяется по размерам авиационной конструкции (с прибавлением 150-200мм по периметру в ширину, для установки вакуумных трубок, приклейки вакуумного мешка, а также изготовления технологического припуска). Выбирая габариты необходимо учесть, что на поверхности выклеечной формы должны изготавливаться и образцы-свидетели предусмотренные технологическим условием на данном авиационном агрегате.

3. Требование по герметичности.

Обшивка выклеенной формы должна обладать герметичностью. Герметичность выклеенной формы проверяется созданием на ее поверхности вакуумного мешка и последующего вакуумирования с контроля вакуума.

4. Система вакуумирования.

В состав каждой выклеенной формы входят штуцер системы вакуумирования и штуцер контроля вакуума. Систем вакуумных и контрольных штуцеров определяется размерами авиационной конструкции изготавливаемой данной выклеечной формой. Вакуумная трубка соединяется со штуцером, вакуумирование имеет d=10мм и отверстия в боковой поверхности d=3мм длиной 30-60мм. Трубка предназначена для распределения вакуума по поверхности выклеенной формы. Для небольших выклеенных форм с размерами около 1мм вакуумную трубку можно не применять. Штуцер контроля вакуума на выклеенной форме должен расположатся около места изготовления образцов свидетелей, а штуцер вакуумирования и контрольный штуцер должен распределятся противоположных концах выклеенной формы.

5. Рекомендации по проектированию каркаса выклеенной формы.

В выклеенной форме элементы каркасао-лекала и диафрагмы изготавливаются из то гоже материала, что и обшивка и приблизительно той же толщины. Расстояние между лекалами и диафрагмами 100-200мм и рассчитывается из условия обеспечения необходимой жесткости выклеенной формы. Соединение элементов каркаса: лекал и диафрагмы должно производится за пределами рабочей поверхности выклеенной формы, так как место соединения является обычно источниками не герметичности. В элементах каркаса (лекал и диафрагмы) необходимо предусматривать отверстия не менее 100мм для циркуляции воздуха от которого происходит нагрев выклеенной формы.

6. Размер рабочей поверхности.

На поверхность выклеечной формы должна наносится информация необходимая для осуществления процесса выкладки, которая наносится в виде линий, букв и цифр.

Примером такой информации является:

- Линия обреза детали, линия характеризует окончательный контур авиационной конструкции после всех этапов изготовления.

- Линия технологического припуска, линия на которой изготавливается полуфабрикат авиаконструкции.

- Линия обрезки сот.


ЗАКЛЮЧЕНИЕ

 

В курсовой работе произведен анализ производственных задач и производственных возможностей производства неметаллических конструкций.

Произведено повышение качества путем совершенствования сборочных работ и оснастки сборки секция 3 блока 2 заднего буфета.

Разработан новый технологический процесс, произведены технико – экономический анализ и обоснование выбора технологического процесса.

Разработана схема сборочной оснастки для сборки склейки секции 3 заднего буфета.

 


СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

 

1. Бунаков В.А. Армированные пластики. Справочное пособие. Изд. МАИ, 1997.

2. Композиционные материалы. Справочник. Под ред. член. кор. АНСССР В.В. Васильева, М.: Машиностроение М.: Машиностроение, 1990.

3. Крысин В.Н. Слоистые клеенные конструкции в самолетостроении. М.: Машиностроение, 1980.

4. Попов А.Г. Расчет времени нагрева и охлаждения конструкции из ПКМ в автоклаве. Методические указания к практическому занятию №4 по курсу "Технология изготовления конструкций из ПКМ" для студентов специальности 1301. Ульяновск: УлГТУ, 1995.

5. Технико-экономическое обоснование дипломных проектов. Под. ред. В.В. Беклешева, М.: Машиностроение 1991.

6. Энциклопедия полимеров. Под. ред. В.А. Каргина и др. М.: Советская энциклопедия, 1972.

7. Воробьёв Ю.А. Точность деталей, полученных литьём и прессованием из цветных сплавов и пластмасс. М.: Машгиз, 1963.-198с.

8. Дальский А.М., Арутюнова И.А. Технология конструкционных материалов: Учебник для Вузов. М.: Машиностроение, 1977.-583с.

9. Термопласты конструкционного назначения /Бабаевский П.Г. Виноградов В.М., Головкин Г.С. и др. Под ред. Е.Б. Тростянской. М.: Химия, 1975.-239с.

10. Филатов В.И., Корсаков В.Д. Технологическая подготовка процессов формования изделий из пластмасс. Л.: Политехника, 1991.-252с.

11. Справочник технолога – машиностроителя. 1- ый том/Под ред. А.Г. Косиловой и Р.К. Мещерякова. М.: Машиностроение, 1985.

12. Справочник технолога – машиностроителя. 2- ой том/Под ред. А.Г.Косиловой и Р.К. Мещерякова. М.:Машиностроение, 1985.

13. П.Т. Коломыцев, Ю.М. Майзель, К.П. Ромадин, Н.И. Сысков "Авиационное материаловедение". Учебник для курсантов авиационно-технических училищ. – М.: Воен. издат., 1971.

14. Худобин Л.В., Берёзин В.Р., Гурьянихин В.Ф. Разработка технологических процессов изготовления деталей в курсовых и дипломных проектах: Учеб. пособие. Ульяновск: УлГТУ, 1996. 148с.: ил.

15. Метрология и основы взаимозаменяемости. Методические указания/ сост. А.П.Глушенков. Ульяновск: УлГТУ, 1996 – 52с.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: