Защитные мероприятия в 3-ех фазных цепях




Защитное зануление применяют в 3х фазных сетях до 1 кВ с глухозаземленной нейтралью.

 

Принципиальная схема зануления представлена на рис. 4.9.

 

Рис.4.9 Принципиальная схема защитного зануления в сети с глухозаземленной нейтралью.
1 - корпус потребителя электроэнергии;
Ro - сопротивление заземления нейтрали источника тока;
Rn – сопротивление повторного заземления нулевого защитного проводника;
ВА - автоматический выключатель с защитой.

Основное назначение защитного зануления – устранение опасности поражения электрическим током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением вследствие замыкания на корпус за счёт быстрого отключения электроустановки от сети действием защиты.

Однако, поскольку корпус оказывается заземленным через нулевой защитный проводник, то в аварийный период (с момента возникновения замыкания на корпус до отключения электроустановки от сети защитой) будет проявляться защитное свойство заземления.

Принцип действия защитного зануления основан на превращении замыкания на корпус в однофазное к.з. с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым отключить поврежденную электроустановку от сети.

Нулеой защитный проводник в схеме защитного заземления предназначен для создания тока однофазного к.з. цепи с малым сопротивлением, чтобы этот ток был достаточным для быстрого срабатывания защиты (т.е. быстрого отключения поврежденной электроустановки от питающей сети).

 

Основные понятия характеристики магнитного поля(Ф, В, Н. м)

Магнитное поле –одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду частицы и ее скорости.

Магнитное поле изображается силовыми линиями, касательные к которым совпадают с ориентацией магнитных стрелок, внесенных в поле (рис. 3.1). Таким образом, магнитные стрелки как бы являются пробными элементами для магнитного поля.

За положительное направление магнитного

поля условно принимают направление

северного полюса магнитной стрелки.

Можно утверждать, что магнитное поле

и электрический ток — взаимосвязанные явления.

Вокруг проводника, в котором существует ток,

всегда имеется магнитное поле, и, наоборот,

в замкнутом проводнике, движущемся в

магнитном поле, возникает ток.

Рассмотрим количественные характеристики

магнитного поля.

 

 

17. Магнитные св-ва материалов. Ферромагнетики, диагнетики, парамагнетики. Характеристика намагничевания.

Электрической прочностью называется свойство диэлектрика сохранять свое электрическое сопротивление при приложении напряжения. Потери диэлектриком своих изоляционных свойств при превышении напряженности поля некоторого критического значения называется пробоем, напряжение – пробивным напряжением.

Электрическую прочность определяю величиной пробивного напряжения, отнесенного к толщине диэлектрика в месте пробоя:

Пробой диэлектриков может наступать в результате электрических, тепловых, а также электрохимических процессов, происходящих под действием электрического поля. Механизм пробоя лучше всего рассматривать в зависимости о агрегатного состояния вещества.

Электрическая прочность измеряется в вольтах на единицу расстояния (обычно В/см) и сильно варьирует с диэлектриком:

§ cлюда, кварц и другиe твёрдые диэлектрики с хорошими изолирующими свойствами обладают прочностью до 106—107 В/см;

§ электрическая прочность жидкого диэлектрика очень сильно зависит от его чистоты и также может достигать 106 В/см;

§ электрическая прочность газов линейно зависит от давления (закон Пашена) и существенно — от толщины слоя («отклонения» от закона Пашена); в случае воздуха в нормальных условиях с толщиной слоя 1 см электрическая прочность составляет приблизительно 3×104 В/см, у элегаза — в 2-4 раза выше.

Диамагнетизм наблюдается во всех веществах и связан тем, что внешнее магнитное поле оказывает влияние на орбитальное движение электронов, вследствие чего индуцируется магнитный момент, направленный навстречу внешнему полю. После снятия внешнего магнитного поля индуцированный магнитный момент диамагнетика исчезает. Магнитная восприимчивость диамагнетиков кd (отрицательная) по абсолютному значению очень мала; она не зависит ни от температуры, ни от напряженности магнитного поля. Диамагнетик выталкивается из магнитного поля. В соответствии с магнитными свойствами все материалы делятся на следующие группы: диамагнитные, парамагнитные, ферромагнитные, антиферромагнитные и ферримагнитные. Парамагнитные вещества отличаются тем, что состоят из атомов с не полностью заполненными оболочками, т.е. обладающих магнитными моментами. Но такие атомы находятся друг от друга достаточно далеко, так, что взаимодействие между ними отсутствует. Поэтому у парамагнетиков магнитные моменты атомов ориентируются в направление внешнего магнитного поля и усиливают его. днородно намагниченное тело:


Любое вещество, помещенное в магнитное поле, приобретает некоторый магнитный момент. Намагниченность J – это магнитный момент единицы объема.

В несильных полях намагниченность прямо пропорциональна напряженности поля, вызывающего намагничивание::

Если же тело намагничено неоднородно (состоит из нескольких частей), то намагниченностьопределяется для каждого физически малого объема dV

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: