Задачи на совместную работу




1. Два оператора, ра­бо­тая вместе, могут на­брать текст га­зе­ты объ­яв­ле­ний за 8 ч. Если пер­вый опе­ра­тор будет ра­бо­тать 3 ч, а вто­рой 12 ч, то они вы­пол­нят толь­ко 75% всей работы. За какое время может на­брать весь текст каж­дый оператор, ра­бо­тая отдельно?

2. На из­го­тов­ле­ние 231 де­та­ли уче­ник тра­тит на 11 часов больше, чем ма­стер на из­го­тов­ле­ние 462 таких же деталей. Известно, что уче­ник за час де­ла­ет на 4 де­та­ли меньше, чем мастер. Сколь­ко де­та­лей в час де­ла­ет ученик?

3. Чтобы на­ка­чать в бак 117 л воды, тре­бу­ет­ся на 5 минут боль­ше времени, чем на то, чтобы вы­ка­чать из него 96 л воды. За одну ми­ну­ту можно вы­ка­чать на 3 л воды больше, чем накачать. Сколь­ко лит­ров воды на­ка­чи­ва­ет­ся в бак за минуту?

4. Дима и Саша вы­пол­ня­ют оди­на­ко­вый тест. Дима от­ве­ча­ет за час на 12 во­про­сов теста, а Саша — на 22. Они од­но­вре­мен­но на­ча­ли от­ве­чать на во­про­сы теста, и Дима за­кон­чил свой тест позже Саши на 75 минут. Сколь­ко во­про­сов со­дер­жит тест?

5. Две трубы на­пол­ня­ют бас­сейн за 8 часов 45 минут, а одна пер­вая труба на­пол­ня­ет бас­сейн за 21 часов. За сколь­ко часов на­пол­ня­ет бас­сейн одна вто­рая труба?

6. Первая труба про­пус­ка­ет на 2 литра воды в ми­ну­ту меньше, чем вторая. Сколь­ко лит­ров воды в ми­ну­ту про­пус­ка­ет вто­рая труба, если ре­зер­ву­ар объёмом 130 лит­ров она за­пол­ня­ет на 4 ми­ну­ты быстрее, чем пер­вая труба за­пол­ня­ет ре­зер­ву­ар объёмом 136 литров?

7. Пер­вый ра­бо­чий за час де­ла­ет на 10 де­та­лей боль­ше, чем вто­рой, и вы­пол­ня­ет заказ, со­сто­я­щий из 60 де­та­лей, на 3 часа быст­рее, чем вто­рой ра­бо­чий, вы­пол­ня­ю­щий такой же заказ. Сколь­ко де­та­лей в час де­ла­ет вто­рой ра­бо­чий?

8. Три бри­га­ды из­го­то­ви­ли вме­сте 266 де­та­лей. Из­вест­но, что вто­рая бри­га­да из­го­то­ви­ла де­та­лей в 4 раза боль­ше, чем пер­вая и на 5 де­та­лей мень­ше, чем тре­тья. На сколь­ко де­та­лей боль­ше из­го­то­ви­ла тре­тья бри­га­да, чем пер­вая.

9. Игорь и Паша кра­сят забор за 20 часов. Паша и Во­ло­дя кра­сят этот же забор за 24 часа, а Во­ло­дя и Игорь — за 30 часов. За сколь­ко часов маль­чи­ки по­кра­сят забор, ра­бо­тая втроём?

10. Три бри­га­ды вме­сте из­го­то­ви­ли 114 кар­дан­ных валов. Известно, что вто­рая бри­га­да из­го­то­ви­ла кар­дан­ных валов в 3 раза больше, чем первая, и на 16 кар­дан­ных валов меньше, чем третья. На сколь­ко кар­дан­ных валов боль­ше из­го­то­ви­ла тре­тья бригада, чем первая?

11. Три бри­га­ды из­го­то­ви­ли вме­сте 114 деталей. Известно, что вто­рая бри­га­да из­го­то­ви­ла де­та­лей в 3 раза больше, чем первая, и на 16 де­та­лей меньше, чем третья. На сколь­ко де­та­лей боль­ше из­го­то­ви­ла тре­тья бригада, чем первая.

12. Три бри­га­ды вме­сте из­го­то­ви­ли 114 син­хро­ни­за­то­ров передач. Известно, что вто­рая бри­га­да из­го­то­ви­ла син­хро­ни­за­то­ров в 3 раза больше, чем первая, и на 16 син­хро­ни­за­то­ров меньше, чем третья. На сколь­ко син­хро­ни­за­то­ров пе­ре­дач боль­ше из­го­то­ви­ла тре­тья бригада, чем первая.

13. Игорь и Паша кра­сят забор за 18 часов. Паша и Во­ло­дя кра­сят этот же забор за 20 часов, а Во­ло­дя и Игорь — за 30 часов. За сколь­ко минут маль­чи­ки по­кра­сят забор, ра­бо­тая втроём?

14. Три бри­га­ды из­го­то­ви­ли вме­сте 248 де­та­лей. Из­вест­но, что вто­рая бри­га­да из­го­то­ви­ла де­та­лей в 4 раза боль­ше, чем пер­вая и на 5 де­та­лей мень­ше, чем тре­тья. На сколь­ко де­та­лей боль­ше из­го­то­ви­ла тре­тья бри­га­да, чем пер­вая.

15. Пер­вый ра­бо­чий за час де­ла­ет на 9 де­та­лей боль­ше, чем вто­рой, и вы­пол­ня­ет заказ, со­сто­я­щий из 112 де­та­лей, на 4 часа быст­рее, чем вто­рой ра­бо­чий, вы­пол­ня­ю­щий такой же заказ. Сколь­ко де­та­лей в час де­ла­ет вто­рой ра­бо­чий?

 

Разные задачи

1. Из пяти сле­ду­ю­щих утверждений о ре­зуль­та­тах матча хок­кей­ных команд "Транспортир" и "Линейка" че­ты­ре истинны, а одно — ложно. Определите, с каким сче­том закончился матч, и ука­жи­те победителя (если матч за­вер­шил­ся победой одной из команд). Ответ обоснуйте.

1) Вы­иг­рал "Транспортир".

2) Всего в матче было за­бро­ше­но менее 10 шайб.

3) Матч за­кон­чил­ся вничью.

4) Всего в матче было за­бро­ше­но более 8 шайб.

5) "Линейка" за­бро­си­ла более 3 шайб.

2. Найдите целое число, если из двух сле­ду­ю­щих утвер­жде­ний верно толь­ко одно: 1) ; 2) .

3. Найдите целое число, если из двух сле­ду­ю­щих утверждений верно толь­ко одно: 1) ; 2) .

4. Кролик утверждает, что вчера Винни-Пух съел не менее 9 ба­но­чек мёда, Пя­та­чок — что не менее 8 баночек, ослик Иа — что не менее 7. Сколь­ко баночек мёда съел вчера Винни-Пух, если из трех этих утвер­жде­ний истинно толь­ко одно?

 

Движение по прямой

1. Из пунк­тов А и В, рас­сто­я­ние между ко­то­ры­ми 19 км, вышли од­но­вре­мен­но нав­стре­чу друг другу два пе­ше­хо­да и встре­ти­лись в 9 км от А. Най­ди­те ско­рость пешехода, шед­ше­го из А, если известно, что он шёл со скоростью, на 1 км/ч большей, чем пешеход, шед­ший из В, и сде­лал в пути по­лу­ча­со­вую остановку.

2. Из пунк­та А в пункт В, рас­сто­я­ние между ко­то­ры­ми 19 км, вышел пешеход. Через пол­ча­са нав­стре­чу ему из пунк­та В вышел ту­рист и встре­тил пе­ше­хо­да в 9 км от В. Ту­рист шёл со скоростью, на 1 км/ч большей, чем пешеход. Най­ди­те ско­рость пешехода, шед­ше­го из А.

3. Расстояние между го­ро­да­ми А и В равно 375 км. Город С на­хо­дит­ся между го­ро­да­ми А и В. Из го­ро­да А в город В вы­ехал автомобиль, а через 1 час 30 минут сле­дом за ним со ско­ро­стью 75 км/ч вы­ехал мотоциклист, до­гнал ав­то­мо­биль в го­ро­де С и по­вер­нул обратно. Когда он вер­нул­ся в А, ав­то­мо­биль при­был в В. Най­ди­те рас­сто­я­ние от А до С.

4. Расстояние между при­ста­ня­ми А и В равно 126 км. Из А в В по те­че­нию реки от­пра­вил­ся плот, а через 1 час вслед за ним от­пра­ви­лась яхта, которая, при­быв в пункт В, тот­час по­вер­ну­ла об­рат­но и воз­вра­ти­лась в А. К этому вре­ме­ни плот про­шел 34 км. Най­ди­те ско­рость яхты в не­по­движ­ной воде, если ско­рость те­че­ния реки равна 2 км/ч. Ответ дайте в км/ч.

5. Расстояние между го­ро­да­ми А и В равно 750 км. Из го­ро­да А в город В со ско­ро­стью 50 км/ч вы­ехал пер­вый автомобиль, а через три часа после этого нав­стре­чу ему из го­ро­да В вы­ехал со ско­ро­стью 70 км/ч вто­рой автомобиль. На каком рас­сто­я­нии от го­ро­да А ав­то­мо­би­ли встретятся?

6. Расстояние между го­ро­да­ми А и В равно 490 км. Из го­ро­да А в город В со ско­ро­стью 55 км/ч вы­ехал пер­вый автомобиль, а через час после этого нав­стре­чу ему из го­ро­да В вы­ехал со ско­ро­стью 90 км/ч вто­рой автомобиль. На каком рас­сто­я­нии от го­ро­да А ав­то­мо­би­ли встретятся?

7. Железнодорожный со­став дли­ной в 1 км прошёл бы мимо стол­ба за 1 мин., а через тун­нель (от входа ло­ко­мо­ти­ва до вы­хо­да по­след­не­го вагона) при той же скорости — за 3 мин. Ка­ко­ва длина тун­не­ля (в км)?

8. Рыболов в 5 часов утра на мо­тор­ной лодке от­пра­вил­ся от при­ста­ни про­тив те­че­ния реки, через не­ко­то­рое время бро­сил якорь, 2 часа ловил рыбу и вер­нул­ся об­рат­но в 10 часов утра того же дня. На какое рас­сто­я­ние от при­ста­ни он отдалился, если ско­рость реки равна 2 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч?

9. Из пунк­та А в пункт В, рас­сто­я­ние между ко­то­ры­ми 13 км, вышел пе­ше­ход. Од­но­вре­мен­но с ним из В в А вы­ехал ве­ло­си­пе­дист. Ве­ло­си­пе­дист ехал со ско­ро­стью, на 11 км/ч боль­шей ско­ро­сти пе­ше­хо­да, и сде­лал в пути по­лу­ча­со­вую оста­нов­ку. Най­ди­те ско­рость пе­ше­хо­да, если из­вест­но, что они встре­ти­лись в 8 км от пунк­та В.

10. Из пунк­та А в пункт В, рас­сто­я­ние между ко­то­ры­ми 27 км, вышел ту­рист. Через пол­ча­са нав­стре­чу ему из пунк­та В вышел пе­ше­ход и встре­тил ту­ри­ста в 12 км от А. Най­ди­те ско­рость ту­ри­ста, если из­вест­но, что она была на 2 км/ч мень­ше ско­ро­сти пе­ше­хо­да.

11. Из пунк­та А в пункт В, рас­сто­я­ние между ко­то­ры­ми 34 км, вы­ехал ве­ло­си­пе­дист. Од­но­вре­мен­но с ним из В в А вышел пе­ше­ход. Ве­ло­си­пе­дист ехал со ско­ро­стью, на 8 км/ч боль­шей ско­ро­сти пе­ше­хо­да, и сде­лал в пути по­лу­ча­со­вую оста­нов­ку. Най­ди­те ско­рость ве­ло­си­пе­ди­ста, если из­вест­но, что они встре­ти­лись в 10 км от пунк­та В.

12. Из пунк­та А в пункт В, рас­сто­я­ние между ко­то­ры­ми 19 км, вышел пе­ше­ход. Через пол­ча­са нав­стре­чу ему из пунк­та В вышел ту­рист и встре­тил пе­ше­хо­да в 9 км от В. Ту­рист шёл со ско­ро­стью, на 1 км/ч боль­шей, чем пе­ше­ход. Най­ди­те ско­рость пе­ше­хо­да, шед­ше­го из А.

13. Две трубы на­пол­ня­ют бас­сейн за 6 часов 18 минут, а одна пер­вая труба на­пол­ня­ет бас­сейн за 9 часов. За сколь­ко часов на­пол­ня­ет бас­сейн одна вто­рая труба?

14. Поезд, дви­га­ясь рав­но­мер­но со ско­ро­стью 63 км/ч, про­ез­жа­ет мимо иду­ще­го в том же на­прав­ле­нии па­рал­лель­но путям со ско­ро­стью 3 км/ч пе­ше­хо­да за 57 секунд. Най­ди­те длину по­ез­да в метрах.

15. Поезд, дви­га­ясь рав­но­мер­но со ско­ро­стью 57 км/ч, про­ез­жа­ет мимо иду­ще­го в том же на­прав­ле­нии па­рал­лель­но путям со ско­ро­стью 5 км/ч пе­ше­хо­да за 45 секунд. Най­ди­те длину по­ез­да в метрах.

16. Из двух го­ро­дов од­но­вре­мен­но нав­стре­чу друг другу от­пра­ви­лись два велосипедиста. Про­ехав не­ко­то­рую часть пути, пер­вый ве­ло­си­пе­дист сде­лал оста­нов­ку на 30 минут, а затем про­дол­жил дви­же­ние до встре­чи со вто­рым велосипедистом. Рас­сто­я­ние между го­ро­да­ми со­став­ля­ет 144 км, ско­рость пер­во­го ве­ло­си­пе­ди­ста равна 24 км/ч, ско­рость вто­ро­го — 28 км/ч. Опре­де­ли­те рас­сто­я­ние от города, из ко­то­ро­го вы­ехал вто­рой велосипедист, до места встречи.

17. Два ве­ло­си­пе­ди­ста од­но­вре­мен­но от­прав­ля­ют­ся в 60-ки­ло­мет­ро­вый про­бег. Пер­вый едет со ско­ро­стью на 10 км/ч боль­шей, чем вто­рой, и при­бы­ва­ет к фи­ни­шу на 3 часа рань­ше вто­ро­го. Най­ди­те ско­рость ве­ло­си­пе­ди­ста, при­шед­ше­го к фи­ни­шу вто­рым.

18. Пер­вый ве­ло­си­пе­дист вы­ехал из посёлка по шоссе со ско­ро­стью 18 км/ч. Через час после него со ско­ро­стью 16 км/ч из того же посёлка в том же на­прав­ле­нии вы­ехал вто­рой ве­ло­си­пе­дист, а ещё через час — тре­тий. Най­ди­те ско­рость тре­тье­го ве­ло­си­пе­ди­ста, если сна­ча­ла он до­гнал вто­ро­го, а через 4 часа после этого до­гнал пер­во­го.

19. Из А в В од­но­вре­мен­но вы­еха­ли два ав­то­мо­би­ли­ста. Пер­вый про­ехал с по­сто­ян­ной ско­ро­стью весь путь. Вто­рой про­ехал первую по­ло­ви­ну пути со ско­ро­стью, мень­шей ско­ро­сти пер­во­го ав­то­мо­би­ли­ста на 11 км/ч, а вто­рую по­ло­ви­ну пути про­ехал со ско­ро­стью 66 км/ч, в ре­зуль­та­те чего при­был в В од­но­вре­мен­но с пер­вым ав­то­мо­би­ли­стом. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ли­ста, если из­вест­но, что она боль­ше 40 км/ч.

20. Из го­ро­дов А и В нав­стре­чу друг другу од­но­вре­мен­но вы­еха­ли мо­то­цик­лист и ве­ло­си­пе­дист. Мо­то­цик­лист при­е­хал в В на 40 минут рань­ше, чем ве­ло­си­пе­дист при­е­хал в А, а встре­ти­лись они через 15 минут после вы­ез­да. Сколь­ко часов за­тра­тил на путь из В в А ве­ло­си­пе­дист?

21. Пер­вые 5 часов ав­то­мо­биль ехал со ско­ро­стью 60 км/ч, сле­ду­ю­щие 3 часа — со ско­ро­стью 100 км/ч, а по­след­ние 4 часа — со ско­ро­стью 75 км/ч. Най­ди­те сред­нюю ско­рость ав­то­мо­би­ля на про­тя­же­нии всего пути.

22. Из двух го­ро­дов од­но­вре­мен­но нав­стре­чу друг другу от­пра­ви­лись два ве­ло­си­пе­ди­ста. Про­ехав не­ко­то­рую часть пути, пер­вый ве­ло­си­пе­дист сде­лал оста­нов­ку на 36 минут, а затем про­дол­жил дви­же­ние до встре­чи со вто­рым ве­ло­си­пе­ди­стом. Рас­сто­я­ние между го­ро­да­ми со­став­ля­ет 82 км, ско­рость пер­во­го ве­ло­си­пе­ди­ста равна 28 км/ч, ско­рость вто­ро­го — 10 км/ч. Опре­де­ли­те рас­сто­я­ние от го­ро­да, из ко­то­ро­го вы­ехал вто­рой ве­ло­си­пе­дист, до места встре­чи.

23. Два бе­гу­на од­но­вре­мен­но стар­то­ва­ли в одном на­прав­ле­нии из од­но­го и того же места кру­го­вой трас­сы в беге на не­сколь­ко кру­гов. Спу­стя один час, когда од­но­му из них оста­ва­лось 1 км до окон­ча­ния пер­во­го круга, ему со­об­щи­ли, что вто­рой бегун прошёл пер­вый круг 20 минут назад. Най­ди­те ско­рость пер­во­го бе­гу­на, если из­вест­но, что она на 8 км/ч мень­ше ско­ро­сти вто­ро­го.

24. Пер­вые 300 км ав­то­мо­биль ехал со ско­ро­стью 60 км/ч, сле­ду­ю­щие 300 км — со ско­ро­стью 100 км/ч, а по­след­ние 300 км — со ско­ро­стью 75 км/ч. Най­ди­те сред­нюю ско­рость ав­то­мо­би­ля на про­тя­же­нии всего пути.

25. Рас­сто­я­ние между го­ро­да­ми А и В равно 120 км. Из го­ро­да А в город В вы­ехал ав­то­мо­биль, а через 90 минут сле­дом за ним со ско­ро­стью 100 км/ч вы­ехал мо­то­цик­лист. Мо­то­цик­лист до­гнал ав­то­мо­биль в го­ро­де С и по­вер­нул об­рат­но. Когда он про­ехал по­ло­ви­ну пути из С в А, ав­то­мо­биль при­был в В. Най­ди­те рас­сто­я­ние от А до С.

26. Первую по­ло­ви­ну трас­сы ав­то­мо­биль про­ехал со ско­ро­стью 55 км/ч, а вто­рую — со ско­ро­стью 70 км/ч. Най­ди­те сред­нюю ско­рость ав­то­мо­би­ля на про­тя­же­нии всего пути.

27. Два ав­то­мо­би­ля од­но­вре­мен­но от­прав­ля­ют­ся в 240-ки­ло­мет­ро­вый про­бег. Пер­вый едет со ско­ро­стью, на 20 км/ч боль­шей, чем вто­рой, и при­бы­ва­ет к фи­ни­шу на 1 ч рань­ше вто­ро­го. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ля.

28. Ве­ло­си­пе­дист вы­ехал с по­сто­ян­ной ско­ро­стью из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми равно 60 км. От­дох­нув, он от­пра­вил­ся об­рат­но в А, уве­ли­чив ско­рость на 10 км/ч. По пути он сде­лал оста­нов­ку на 3 часа, в ре­зуль­та­те чего за­тра­тил на об­рат­ный путь столь­ко же вре­ме­ни, сколь­ко на путь из А в В. Най­ди­те ско­рость ве­ло­си­пе­ди­ста на пути из А в В.

29. Из пунк­та А в пункт В, рас­по­ло­жен­ный ниже по те­че­нию реки, от­пра­вил­ся плот. Од­но­вре­мен­но нав­стре­чу ему из пунк­та В вышел катер. Встре­тив плот, катер сразу по­вер­нул и по­плыл назад. Какую часть пути от А до В прой­дет плот к мо­мен­ту воз­вра­ще­ния ка­те­ра в пункт В, если ско­рость ка­те­ра в сто­я­чей воде вчет­ве­ро боль­ше ско­ро­сти те­че­ния реки?

30. До­ро­га между пунк­та­ми A и В со­сто­ит из подъёма и спус­ка, а её длина равна 14 км. Ту­рист прошёл путь из А в В за 4 часа, из ко­то­рых спуск занял 2 часа. С какой ско­ро­стью ту­рист шёл на спус­ке, если его ско­рость на подъёме мень­ше его ско­ро­сти на спус­ке на 3 км/ч?

31. Два че­ло­ве­ка од­но­вре­мен­но от­прав­ля­ют­ся из од­но­го и того же места по одной до­ро­ге на про­гул­ку до опуш­ки леса, на­хо­дя­щей­ся в 4 км от места от­прав­ле­ния. Один идёт со ско­ро­стью 2,7 км/ч, а дру­гой — со ско­ро­стью 4,5 км/ч. Дойдя до опуш­ки, вто­рой с той же ско­ро­стью воз­вра­ща­ет­ся об­рат­но. На каком рас­сто­я­нии от точки от­прав­ле­ния про­изойдёт их встре­ча?

32. Поезд, дви­га­ясь равномерно со ско­ро­стью 86 км/ч, про­ез­жа­ет мимо пешехода, иду­ще­го в том же на­прав­ле­нии параллельно путям со ско­ро­стью 6 км/ч, за 18 секунд. Най­ди­те длину по­ез­да в метрах.

33. Поезд, дви­га­ясь равномерно со ско­ро­стью 44 км/ч, про­ез­жа­ет мимо пешехода, иду­ще­го в том же на­прав­ле­нии параллельно путям со ско­ро­стью 4 км/ч, за 81 секунду. Най­ди­те длину по­ез­да в метрах.

34. Из А в В од­но­вре­мен­но вы­еха­ли два ав­то­мо­би­ли­ста. Пер­вый про­ехал с по­сто­ян­ной ско­ро­стью весь путь. Вто­рой про­ехал первую по­ло­ви­ну пути со ско­ро­стью 30 км/ч, а вто­рую по­ло­ви­ну пути про­ехал со ско­ро­стью, большей скорости первого на 9 км/ч, в ре­зуль­та­те чего при­был в В од­но­вре­мен­но с пер­вым ав­то­мо­би­ли­стом. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ли­ста.

35. Из А в В од­но­вре­мен­но вы­еха­ли два ав­то­мо­би­ли­ста. Пер­вый про­ехал с по­сто­ян­ной ско­ро­стью весь путь. Вто­рой про­ехал первую по­ло­ви­ну пути со ско­ро­стью 57 км/ч, а вто­рую по­ло­ви­ну пути про­ехал со ско­ро­стью, большей скорости первого на 38 км/ч, в ре­зуль­та­те чего при­был в В од­но­вре­мен­но с пер­вым ав­то­мо­би­ли­стом. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ли­ста.

36. Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 33 минуты раньше, чем велосипедист приехал в А, а встретились они через 22 минуты после выезда. Сколько часов затратил на путь из В в А велосипедист?

37. Ве­ло­си­пе­дист вы­ехал с по­сто­ян­ной ско­ро­стью из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми равно 100 км. От­дох­нув, он от­пра­вил­ся об­рат­но в А, уве­ли­чив ско­рость на 15 км/ч. По пути он сде­лал оста­нов­ку на 6 часов, в ре­зуль­та­те чего за­тра­тил на об­рат­ный путь столь­ко же вре­ме­ни, сколь­ко на путь из А в В. Най­ди­те ско­рость ве­ло­си­пе­ди­ста на пути из А в В.

38. Теп­ло­ход про­хо­дит по те­че­нию реки до пунк­та на­зна­че­ния 285 км и после сто­ян­ки воз­вра­ща­ет­ся в пункт от­прав­ле­ния. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 34 км/ч, стоянка длится 19 часов, а в пункт отправления теплоход возвращается через 36 часов после отплытия из него.

39. До­ро­га между пунк­та­ми A и В со­сто­ит из подъёма и спус­ка, а её длина равна 27 км. Ту­рист прошёл путь из А в В за 8 часов, из ко­то­рых спуск занял 3 часа. С какой ско­ро­стью ту­рист шёл на спус­ке, если его ско­рость на подъёме мень­ше его ско­ро­сти на спус­ке на 1 км/ч?

40. Расстояние между го­ро­да­ми А и В равно 120 км. Город С на­хо­дит­ся между го­ро­да­ми А и В. Из го­ро­да А в город В вы­ехал автомобиль, а через 36 минут сле­дом за ним со ско­ро­стью 75 км/ч вы­ехал мотоциклист, до­гнал ав­то­мо­биль в го­ро­де С и по­вер­нул обратно. Когда он проехал половину пути из C в А, ав­то­мо­биль при­был в В. Най­ди­те рас­сто­я­ние от А до С.

41. Два ве­ло­си­пе­ди­ста од­но­вре­мен­но от­прав­ля­ют­ся в 180-ки­ло­мет­ро­вый про­бег. Пер­вый едет со ско­ро­стью на 5 км/ч боль­шей, чем вто­рой, и при­бы­ва­ет к фи­ни­шу на 3 часа рань­ше вто­ро­го. Най­ди­те ско­рость ве­ло­си­пе­ди­ста, при­шед­ше­го к фи­ни­шу первым.

42. Теп­ло­ход про­хо­дит по те­че­нию реки до пунк­та на­зна­че­ния 280 км и после сто­ян­ки воз­вра­ща­ет­ся в пункт от­прав­ле­ния. Най­ди­те ско­рость теп­ло­хо­да в не­по­движ­ной воде, если ско­рость те­че­ния равна 4 км/ч, сто­ян­ка длит­ся 15 часов, а в пункт от­прав­ле­ния теп­ло­ход воз­вра­ща­ет­ся через 39 часов после от­плы­тия из него.

43. Пер­вый ве­ло­си­пе­дист вы­ехал из посёлка по шоссе со ско­ро­стью 21 км/ч. Через час после него со ско­ро­стью 15 км/ч из того же посёлка в том же на­прав­ле­нии вы­ехал вто­рой ве­ло­си­пе­дист, а ещё через час — тре­тий. Най­ди­те ско­рость тре­тье­го ве­ло­си­пе­ди­ста, если сна­ча­ла он до­гнал вто­ро­го, а через 9 часов после этого до­гнал пер­во­го.

44. Два бе­гу­на од­но­вре­мен­но стар­то­ва­ли в одном на­прав­ле­нии из од­но­го и того же места кру­го­вой трас­сы в беге на не­сколь­ко кру­гов. Спу­стя один час, когда од­но­му из них оста­ва­лось 1 км до окон­ча­ния пер­во­го круга, ему со­об­щи­ли, что вто­рой бегун прошёл пер­вый круг 15 минут назад. Най­ди­те ско­рость пер­во­го бе­гу­на, если из­вест­но, что она на 6 км/ч мень­ше ско­ро­сти вто­ро­го.

45. Два че­ло­ве­ка од­но­вре­мен­но от­прав­ля­ют­ся из од­но­го и того же места по одной до­ро­ге на про­гул­ку до опуш­ки леса, на­хо­дя­щей­ся в 3,7 км от места от­прав­ле­ния. Один идёт со ско­ро­стью 3,3 км/ч, а дру­гой — со ско­ро­стью 4,1 км/ч. Дойдя до опуш­ки, вто­рой с той же ско­ро­стью воз­вра­ща­ет­ся об­рат­но. На каком рас­сто­я­нии от точки от­прав­ле­ния про­изойдёт их встре­ча?

46. Два ав­то­мо­би­ля од­но­вре­мен­но от­прав­ля­ют­ся в 420-ки­ло­мет­ро­вый про­бег. Пер­вый едет со ско­ро­стью, на 24 км/ч боль­шей, чем вто­рой, и при­бы­ва­ет к фи­ни­шу на 2 ч рань­ше вто­ро­го. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ля.

47. Поезд, дви­га­ясь рав­но­мер­но со ско­ро­стью 141 км/ч, про­ез­жа­ет мимо иду­ще­го в том же на­прав­ле­нии па­рал­лель­но путям со ско­ро­стью 6 км/ч пе­ше­хо­да за 8 секунд. Най­ди­те длину по­ез­да в метрах.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: