Газовая сварка цветных металлов и сплавов




В процессе работы с медью возникают определенные сложности: во-первых, она окисляется; во-вторых, обладает высокой теплопроводностью и высоким коэффициентом расширения при нагревании. Поэтому при ее сварке необходимо использовать флюсы и присадки (марганец, кремний) для очищения от образующихся оксидов, а также избегать появления тепловых деформаций, обусловленных большой теплоемкостью металла. Для этого необходимо увеличить скорость сварки. Наконечник при этом должен быть на 1-2 номера больше, чем наконечник для сварки стали. Чтобы разрушить оксидный налет, осуществляют проковку сваренного шва в горячем состоянии. Сварка меди делается в виде стыковых и угловых соединений, причем только в один слой, тавровое соединение используется только при ремонте. Внахлестку медь не сваривается никогда.

Латунь, как и медь, — трудносвариваемый сплав. Выгорание цинка и поглощение газов расплавленным металлом — основные сложности, возникающие при сварке латуни. Вследствие этого снижается механическая прочность соединения. Чтобы устранить этот недостаток, после всего процесса производится проковка швов. Для латуни с содержанием цинка менее 40% осуществляется холодная проковка, для содержащих более 40% цинка — проковка при температуре 650 “С. Нельзя забывать о том, что выделяемые при сварке латуни пары цинка ядовиты, поэтому необходимо защищать органы дыхания.

Бронза, как говорилось ранее, представляет собой сплав меди с оловом, алюминием, кремнием и другими металлами. Газовая сварка применяется только для оловянной бронзы, остальные же разновидности этого сплава свариваются дуговым методом.

Работа с алюминием и его сплавами затруднена тем, что на расплавленном участке появляется тугоплавкая пленка. Для ее устранения используют флюсы и присадочную проволоку. Алюминиевые сплавы бывают деформируемые (сплавы с марганцем — АМц; с магнием — АМг; термостойкие сплавы с медью типов Д1 и Д6 (дюралюминий)) и литейные (различные виды силумина’типов Ал2, Ал4 и Ал9).

Метод газовой сварки используется в основном для сваривания литейных алюминиевых сплавов. Чтобы избежать возникновения пористости металла и его сплавов, нужно предварительно подогревать детали и уменьшать скорость сварки, пламя должно быть мягким и ровным. При газовой сварке алюминия делается только стыковое соединение, нахлесточные и тавровые швы производить не рекомендуется, поскольку из них сложно удалять шлаки и остатки флюсов.

В объем газосварочных работ входит ремонт поврежденных или изношенных деталей, исправление брака литья, термической или механической обработки. Существуют различные способы сварки чугуна, среди которых — с расплавлением основного металла и без него.

Сварка с расплавлением металла делится на холодную и горячую. А сварка без расплавления — на пайкосварку с чугунным присадочным материалом и латунным припоем.

Холодную сварку используют в тех случаях, когда детали могут расширяться без внутреннего напряжения. Газовая сварка при этом производится нормальным ацетиленкислородным пламенем и универсальными горелками Г2 и ГЗ.

Горячая сварка предполагает предварительный подогрев деталей. Чаще всего это делается пламенными горелками, паяльными лампами. Использование флюсов при горячей сварке обязательно.

Низкотемпературная сварка чугуна, проводимая без расплавления основного металла, используется на последнем этапе обработки изделия. Этот способ позволяет предотвратить появление деформаций и трещин. Плавке в этом случае подвергается только присадочный пруток. При низкотемпературной сварке чугуна можно использовать латунные припои. Плюсом такого метода является низкая температура нагрева деталей — до 650-750 С.

Газовая сварка может применяться для соединения легированных сталей, в составе которых есть хром, никель, титан и другие элементы. Однако нужно хорошо знать свойства и особенности каждого вида этих соединений. Возможность использования газовой сварки в работе с углеродистыми сталями зависит от процентного содержания в них углерода. Чем его больше, тем свариваемость стали хуже, и наоборот. Поэтому для высокоуглеродистой стали рекомендуется пайка или наплавка.

Билет № 6

ВОПРОС 1

Перенос металла - процесс перехода расплавленного электродного металла в сварочную ванну.

Что такое коэффициент расплавления электродов?

У каждого типа электродов имеется свой коэффициент расплавления, который высчитывается в зависимости от того, какая масса расплавленного электрода приходится на один ампер силы тока за промежуток времени горения дуги, равный одному рабочему часу.

При проведении сварочных работ следует учитывать, что не вся масса расплавленного электрода переносится в сварной шов, так как в данном случае присутствуют, кроме того, такие явления, как разбрызгивание расплавленного металла, его испарение, а также угар, вызываемый горением сварочной дуги. При этом уровень потерь металла электрода при сварке зависит от нескольких факторов:

 

от состава проволоки, используемой для изготовления электрода

от типа покрытия, применяемого при изготовлении электрода

от режима сварки

от типа сварного соединения.

Надо учитывать, кроме того, что потери металла электрода будут тем больше, чем выше плотность тока и длина сварной дуги.

Что такое коэффициент наплавки электрода?

Коэффициент наплавки электродов зависит от того, какого рода ток используется при проведении сварки (постоянный или переменный), какова его полярность (прямая или обратная). Также большое значение при определении коэффициента наплавки имеет то, какая именно проволока использовалась при изготовлении электрода и каков тип его покрытия. Кроме того, коэффициент наплавки зависит и от того, в каком пространственном положении выполняются сварочные работы.

По своим значениям коэффициент наплавки, как правило, меньше, чем коэффициент расплавления из-за потерь металла в процессе сварки. Если коэффициент расплавления электродов, в зависимости от их типов, может составлять от 7 до 22 г/А-ч, то коэффициент наплавки при этом на 1-3 г/А-ч меньше. Но у некоторых типов электродов коэффициент наплавки может быть абсолютно равным коэффициенту расплавления, а если в составе покрытия электрода имеется порошок железа, то в этом случае коэффициент наплавки будет даже выше, чем коэффициент расплавления.

ВОПРОС 2

Особенностью данной технологии является то, что сварка происходит в среде защитного инертного газа аргона. Это позволяет повысить качество соединения металлов и обеспечивает максимально возможную защиту от окисления. Аргон подается к горелке под высоким давлением и, полностью перекрывая рабочую зону, не позволяет кислороду проникать в соединяемые металлы, предотвращая появление ржавчины.

Род тока и полярность. Арногодуговая сварка вольфрамовым электродом может быть TIG-DC — постоянным током, либо TIG-AC — переменным током.

Сварка постоянным током может выполняться на прямой и обратной полярности. Когда электрод подключен к положительному полюсу источника питания, полярность считается обратной. Для сварки на обратной полярности электрод должен иметь гораздо больше диаметр, чем при сварке на прямой.

В большинстве случаев сварку вольфрамовым электродом ведут на постоянном токе прямой полярности. За исключением сварки алюминия, магния и бериллия, которые выполняют на переменном токе (TIG-AC).

В настоящее время источники постоянного тока чаще производят с функцией импульсно-дуговой сварки, что позволяет получать лучшую форму шва и сваривать тонкие детали.

Сварка переменным током используется для сварки выше указанных материалов. Обладает возможностью разрушения поверхностного оксидного слоя. Стабильности дуги при этом хуже. Метод TIG-AC вместо синусоидального тока 50 Гц использует прямоугольный переменный ток для обеспечения большей стабильности и контроля процесса сварки.

Сила тока. Параметр настраиваемый непосредственно на сварочном аппарате. Выбирается в зависимости от типа и толщины свариваемого материала, диаметра электрода, полярности сварки, типа защитного газа и пространственного положения сварки.

От этого параметра зависит глубина проникновения и ширина шва, но, с другой стороны он влияет на температуру конца вольфрамового электрода. Увеличение значения силы тока повышает глубину проплавления и увеличивает скорость сварки. Высокая сила тока способствует расплавлению электрода, и существует вероятность появления вольфрамовых включений в сварном шве.

Выбор величины сварочного тока (А)

Диаметр электрода, мм Переменный ток Постоянный ток прямой полярности Постоянный ток обратной полярности
1-2 20-100 65-160 10-30
  100-160 140-180 20-40
  140-220 250-340 30-50
  200-280 300-400 40-80
  250-300 350-450 60-100

Напряжение дуги. Зависит от типа защитного газа, длины дуги, формы сварного шва и материала электрода. Увеличение напряжения повышает ширину поверхности шва и, соответственно, понижает глубину проплавления.

Скорость сварки. При ручной аргонодуговой сварке оптимальная скорость сварки оценивается самим сварщиком. Обычно в пределах 0,1-0,3 м/мин.

При неизменной силе тока и напряжения, она влияет на количество энергии передаваемой на изделие. При помощи скорости сварки можно регулировать структурные изменения шва, размер и распределение сварочных напряжений. Скорость сварки влияет на глубину проплавления и ширину шва.

Тип и диаметр электрода. Основной материал электрода — вольфрам, но для повышения долговечности электрода, стабилизации дуги и облегчения зажигания, в состав включают: торий, цирконий.

Тип и расход защитного газа. Чаще всего для сварки вольфрамовым электродом используют аргон или смесь аргона и гелия, который увеличивает энергию дуги и скорость сварки, но ухудшает стабильность дуги. Для сварки меди может использоваться азот, который является инертным по отношению до меди. В большинстве случаев расход аргона составляет 8-16 л/мин.

ВОПРОС 3



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: