ЭЛЕМЕНТНАЯ БАЗА ЦИФРОВОЙ ЭЛЕКТРОНИКИ




3.1. КЛАССИФИКАЦИЯ И ОБОЗНАЧЕНИЯ ЦИФРОВЫХ МИКРОСХЕМ

3.1.1.Основные определения

 

Интегральная микросхема - это микроэлектронное изделие, состоящее из активных (транзисторов) и пассивных (диодов, резисторов, конденсаторов) элементов, а также из соединяющих их проводников, которое изготавливается в едином технологическом процессе в объеме полупроводника или на поверхности диэлектрического основания, заключено в корпус и представляет собой неразделимое целое. Иногда ее называют интегральной схема, иногда микросхемой, соответственно, возможны сокращенные обозначения ИМС, ИС, МС.

По технологии изготовления микросхемы делятся на три разновидности: полупроводниковые (самые распространенные), пленочные (почти не выпускаются) и гибридные (выпускают немного и выпуск сокращают).

В полупроводниковых микросхемах все элементы и их соединения изготавливаются в объеме (внутри) и частично на поверхности полупроводника. Иногда полупроводниковую микросхему называют твердотельной схемой, что является буквальным переводом с английского языка (solid state).

В пленочной микросхеме все элементы и их соединения выполнены в виде пленок из проводящих и диэлектрических материалов на диэлектрическом основании. В этих микросхемах нет транзисторов и диодов.

В гибридных микросхемах пассивные элементы и соединительные проводники изготавливают по пленочной технологии, а бескорпусные транзисторы и диоды, изготовленные отдельно по полупроводниковой технологии, соединяют тонкими проводами диаметром 0,04 мм с контактными площадками.

По функциональному назначению микросхемы делятся на две категории:

– аналоговые, обрабатывающие сигналы, изменяющиеся по закону непрерывной функции;

– цифровые, обрабатывающие цифровые сигналы.

Транзисторы, применяющиеся в цифровых микросхемах, бывают двух типов:

– обычные (n–p–n или p–n–p) биполярные транзисторы;

– полевые (униполярные) транзисторы.

В цифровых микросхемах применяются полевые транзисторы только с изолированным затвором, имеющие структуру: металл (затвор), диэлектрик (изоляция затвора), полупроводник (канал, сток–исток), сокращенно МДП, а так как в качестве диэлектрика обычно используется окись кремния, то обычно эти транзисторы, а также микросхемы на них сокращенно называют МОП. Чаще всего в цифровых микросхемах используют пары МОП транзисторов, дополняющие друг друга по проводимости канала, такие микросхемы называют КМОП от слова комплементарный, что означает дополняющий.

В зависимости от элементов, на которых собраны входные и выходные каскады микросхем, от схемных особенностей этих каскадов цифровые микросхемы делятся на несколько групп или, так называемых " логик " (здесь под словом " логика " подразумевается логический элемент или электронный ключ):

1. РТЛ, – резисторно–транзисторная логика, в которой на входах стоит резистивный сумматор токов, реализующий для положительной логики функцию ИЛИ; выходной каскад собран на транзисторном инверторе;

2. ДТЛ, – диодно–транзисторная логика, в которой на входах стоит несколько диодов, реализующих функцию И или ИЛИ; выходной каскад на транзисторах;

3. ТТЛ, – транзисторно–транзисторная логика, в логических элементах которой к входам подключены эмиттеры многоэмиттерного транзистора; с помощью этого многоэмиттерного транзистора реализуется функция И; выходной каскад собран на транзисторах;

4. ЭСЛ, – эмиттерно–связанная логика, в которой на входах стоят транзисторы, эмиттеры которых связаны друг с другом;

5. nМОП, pМОП, – МОП логика, все элементы которой выполнены на МОП (металл-окисел-полупроводник) транзисторах с проводимостью канала n –типа (n– МОП) или p –типа (p– МОП);

6. КМОП, – логика, все элементы которой выполнены на двух типах МОП транзисторов nМОП и pМОП, дополняющих друг друга, комплементарных;

7. И2 Л, – интегральная инжекционная логика, в которой отсутствуют резисторы; инжекция носителей в область базы транзистора осуществляется с помощью активных генераторов тока, выполненных на p–n–p транзисторах, тогда как сам базовый инвертор, – на n–p–n транзисторах.

По принятой у нас системе обозначение микросхемы должно состоять из четырех основных элементов:

1) цифра, соответствующая конструктивно–технологической группе (1, 5, 6, 7, – полупроводниковые микросхемы, из них 7, – бескорпус­ные; 2, 4, 8, – гибридные микросхемы; 3, – прочие, в том числе пленочные, вакуумные, керамические и т.д.);

2) две, а в последнее время три цифры, обозначающие порядковый номер разработки серии микросхем;

3) две буквы, обозначающие функциональное назначение микросхемы; первая буква соответствует подгруппе (порядка двадцати подгрупп), вторая, – виду (от трех до семнадцати видов в подгруппе);

4) порядковый номер разработки данной микросхемы внутри своего вида в данной серии.

Номером серии микросхемы считают первые три или четыре цифры. Для микросхем, используемых в устройствах широкого применения, перед номером серии ставится буква К. Для характеристики материала и типа корпуса микросхемы после буквы К могут быть добавлены следующие буквы: Р, – для пластмассового корпуса второго вида, М, – для керамического, металлического и стеклокерамического корпуса второго типа. В конце обозначения микросхемы может быть добавлена буква, конкретизирующая один из основных ее параметров.

Например: КМ155ЛА3, К561ИЕ33, 564ЛА7, КР565РУ8Г.

Корпуса цифровых микросхем бывают в основном двух видов:

1. Планарные (плоские), у этих микросхем условное обозначение корпуса начинается с цифры 4; выводы числом от четырнадцати до сорока двух расположены с двух сторон микросхемы с шагом 1.25 мм, прямые, припаиваются, как правило, к дорожкам печатной платы на стороне установки микросхем; такие корпуса часто называют SOIC (small outline integrated cirquit, – микросхема в малом корпусе с выводами, не лежащими в одну линию). Иногда такой тип корпуса называют сокращенно, – SO.

 

Рис.3.1. Планарный корпус микросхемы

2. Корпус dip – dual in line package, – в две линии расположенные выводы (иногда этот тип корпуса называют DIL, иногда, чтобы указать, что корпус изготовлен из пластмассы – PDIP, plastic DIP), – корпус микросхемы, у которой обозначение корпуса начинается с цифры 2; выводы числом от четырнадцати до сорока двух с двух сторон микросхемы с шагом обычно 2,5 мм, изогнутые под углом 900, припаиваются только в отверстиях печатных плат.

 

Рис. 3.2. DIP корпус микросхемы

 

Отечественные ТТЛ микросхемы в планарных корпусах часто имеют в обозначении серии вторую цифру 3 (133, 136), они обычно выпускаются для специального применения при температуре от – 60 0C до 125 0C, а в dip–корпусах имеют вторую цифру 5 (155,1531), выпускаются для широкого применения при температуре от – 10 0C до 70 0C.

Среди миниатюризированных современных корпусов микросхем, предназначенных для припаивания только на стороне установки микросхем, можно в качестве примера привести следующие:

 

– SOIC – small outline integrated circuit, при обозначении SN…DW

 

Рис.3.3. SOIC корпус микросхемы

 

За рубежом в обозначении ТТЛ микросхем имеются числа 54 для микросхем специального (военного) применения, и 74, – для широкого (гражданского) применения. Буквы в конце зарубежных обозначений означают: L, – низкое потребление мощности, но низкое быстродействие; H, – высокое быстродействие, но и большое потребление мощности; S, – с диодами Шоттки (Sсhottky); A, – улучшенные, перспективные от слова Advance (вольный перевод "аванс"); F, – быстрые от слова Fast – быстрый. В обозначение зарубежных КМОП (CMOS – Complementary Metal-Oxide-Stmiconductor) микросхем обычно входит число 40 (CD4011B).

Американская фирма "TEXAS INSTRUMENTS", крупнейший в мире разработчик и производитель цифровых микросхем средней интеграции, в одном из своих проспектов опубликовала график, приведенный на рис. 3.4, которым, по мнению специалистов этой фирмы, можно охарактеризовать историю развития и перспективы использования различных серий цифровых микросхем.


 
 

 


Рис. 3.4. Жизненный цикл микросхем различной технологии по данным американской фирмы "TEXAS INSTRUMENTS":

V/ LVC Низковольтная CMOS логика;

LVT Низковольтная технология;

ALVC Усовершенствованная низковольтная CMOS логика;

ABT Усовершенствованная BiCMOS технология;

BCT BiCMOS технология;

F Биполярная технология серии 74F;

AC/ACT Усовершенствованная CMOS логика;

HC/HCT Высокоскоростная CMOS логика.

 

3.1.2. Параметры цифровых микросхем

Параметры цифровых микросхем делятся на три группы: статические, динамические и интегральные.

Статические параметры цифровых микросхем характеризуют микросхему в статическом (установившемся) режиме. К ним относятся:

1. Напряжение источника питания Uпит. [В] и допуск на его изменение DUпит. (для ТТЛ DUпит. = ± 5; 10 %; для большинства же серий КМОП допустимо питание в пределах от 3 до 15 В).

2. Входные и выходные допустимые напряжения U0вх.max, U0вых.max, U1вх.min, U1вых.min [В], для некоторых типов микросхем показаны на рис. 3.5.

На рис.3.5 стрелками, направленными вниз, показаны типовые, наиболее часто встречающиеся значения уровней логического нуля и единицы, а стрелками, направленными вверх, показаны типовые значения порогов переключения микросхем.

3. Входные и выходные токи при лог.0 и лог.1 и их допуски: I0вх.max, I0вых.max, I1вх.min, I1вых.min.

4. Коэффициент разветвления по выходу (это число входов микросхемы данной серии, которые допустимо подключать к данному выходу микросхемы), обычно для ТТЛ Кразв.=10, для КМОП Кразв.=50 … 100.

5. Коэффициент объединения по входу Коб. (обычно это число входов данной микросхемы). Как правило Коб. = 2; 3; 4 и 8. Если нужно другое число, то применяют специальные микросхемы, – расширители, или собирают схему по законам булевой алгебры.

6. Потребляемая мощность (статическая) обычно рассматривается как полу сумма мощностей, потребляемых при нуле и при единице:

Мощность, потребляемая микросхемами в реальных режимах работы, существенно зависит от частоты их переключения, как это показано на рис.3.1.6.

 


Рис.3.5. Области допустимых значений входных и выходных напряжений ТТЛ и КМОП микросхем при напряжении их питания +5В и +12В.

 

7. Помехоустойчивость (статическая) Uпом. – допустимое напряжение помех на входе микросхемы, определяется из двух значений:

 

;

Из этих двух значений выбирается меньшее. Эти значения помехоустойчивости даны для предельных значений питающих напряжений, температуры окружающей среды и др. условий. Реальная помехоустойчивость микросхем примерно в два раза лучше, чем определяемая по приведенной формуле.

 

Рис.3.6. Зависимость мощности, потребляемой микросхемами различных серий, от частоты переключения:

a – ТТЛ микросхемы серии КР1531 (F);

b – ТТЛ микросхемы серии К555 (LS);

c – ТТЛ микросхемы серии КР1533 (ALS);

d – КМОП микросхемы серии 1564 (HCT);

e – КМОП микросхемы серии К561 и КР1561 (74C);

f – КМОП микросхемы серии КР1554 (ACT).

 

Рис. 3.7. Области допустимых значений входных и выходных напряжений ТТЛ и КМОП микросхем при напряжении их питания +5 В и напряжения статической помехи при нулевом и единичном уровнях.

 

В зависимости от продолжительности помехи различают статическую и динамическую помехоустойчивость. Статическую помехоустойчивость связывают с помехами, длительность которых больше времени переходных процессов, а динамическую, – с кратковременными помехами. Динамическая помехоустойчивость лучше статической за счет того, что от короткого импульса помех микросхемы просто не успевает переключиться.

Динамические параметры цифровых микросхем определяют максимальную частоту смены входных состояний, при которой не нарушается нормальное функционирование микросхем. Временные диаграммы, иллюстрирующие способы определения временных динамических параметров, показаны на рис. 3.8.

 

 

 


Рис.3.8. Временные диаграммы, иллюстрирующие способы определения временных динамических интегральных микросхем.

 

К динамическим параметрам цифровых интегральных микросхем обычно относят следующие:

1. Среднее время tзд.р. задержки распространения переднего и заднего фронтов:

.

2. Длительность t0,1Ф фронта выходного сигнала при перепаде от нуля к единице (от 0.1 до 0.9 амплитуды сигнала) и t1,0Ф длительность фронта выходного сигнала при перепаде от 1 к 0 (от 0.9 до 0.1 амплитуды сигнала), как это показано на рис.3.6.

 

3. Максимальная частота переключения:

Интегральные параметры цифровых микросхем отражают уровень развития технологии и схемотехники, а также качество цифровых микросхем:

1. Энергия переключения [пДж].

2. Степень интеграции , где n, – число простых логических элементов (2И–НЕ) на кристалле (при N = 2 микросхемы обычно называют схемами средней интеграции, – СИС; при N = 3 микросхемы обычно называют схемами большой интеграции, – БИС; при N = 4 микросхемы обычно называют схемами сверх большой интеграции, – СБИС).

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: