Риунок. 1 Принцип коммутации каналов по STM-технологии




 

Демультиплексор просто распределяет в течение каждого своего цикла работы блоки данных обоймы по выходным каналам - первый блок данных обоймы на первый выходной канал и т. д. В результате в технологии STM каждый входной и выходной канал ассоциируется с фиксированным номером слота или нескольких слотов в конкретной обойме. Однажды захваченный слот остается в распоряжении соединения "входной канал - выходной канал" в течение всего времени существования этого соединения, даже если трафик является пульсирующим и не всегда требует захваченного количества слотов.. Трафик вычислительных сетей имеет ярко выраженный асинхронный и пульсирующий характер. Компьютер посылает пакеты в сеть в случайные моменты времени, по мере возникновения в этом необходимости. При этом интенсивность посылки пакетов в сеть и их размер могут изменяться в больших пределах - например, загрузка большого файла документа с удаленного сервера вызывает интенсивный поток пакетов максимально возможных размеров, после чего обычно следует большая пауза, когда пользователь изучает на экране его содержание. Сложность совмещения компьютерного и мультимедийного трафика хорошо видна на следующем рисунке.

Рисунок 2 Два типа трафика

 

Эта задача очень похожа на проблему выполнения нескольких процессов в мультипрограммной операционной системе, причем синхронный трафик является аналогом процессов реального времени. В операционных системах минимальное время реакции системы для процессов реального времени обеспечивается за счет присвоения им высших приоритетов и дисциплины вытесняющей многозадачности, когда выполнение низкоприоритетного процесса мгновенно прерывается при появлении готового к выполнению высокоприоритетного процесса. При совмещении трафиков приоритеты применить можно, но только относительные, так как прерывание передачи пакета, а затем восстановление этой передачи с прерванного места при распределенном характере вычислительной сети - сама по себе очень сложная задача. Как компьютерные сети, так и цифровые телефонные сети предоставляют некоторые возможности для передачи через них "чужеродного" трафика. Цифровые сети при этом заранее выделяют фиксированное число тайм-слотов для компьютерного трафика, тем самым предоставляя сервис, аналогичный выделенным линиям, имеющим фиксированную пропускную способность. Это дорогой сервис, так как для хорошей передачи пульсаций трафика нужно купить такое число тайм-слотов, которое соответствовало бы трафику максимальной интенсивности. В периоды затишья на выходе компьютерной сети эти оплаченные тайм-слоты используются вхолостую. Компьютерные территориальные сети в последнее время тоже стали совмещать голосовой трафик со своим собственным. Такие услуги предоставляют некоторые сети frame relay, но для обеспечения жестких требований к синхронизму они существенно уменьшают максимально допустимый размер компьютерного пакета, тем самым снижая полезную пропускную способность для своего трафика.

Основы технологии ATM

 

Подход, реализованный в технологии ATM, состоит в представлении потока данных от каждого канала любой природы - компьютерного, телефонного или видеоканала пакетами фиксированной и очень маленькой длины - 53 байта вместе с небольшим заголовком в 5 байт. Пакеты ATM называются ячейками - cell. Небольшая длина пакетов позволяет сократить время на их передачу и тем самым обеспечить небольшие задержки при передаче пакетов, требующих постоянного темпа передачи, характерного для мультимедийной информации. При приоритетном обслуживании мультимедийного трафика коммутаторами сети, его пакеты будут вынуждены даже при дисциплине относительных приоритетов ожидать в худшем случае в течение небольшого и фиксированного времени - времени передачи пакета из 53 байт, что при скорости в 155 Мбит/с составит менее 3 мкс.

Для того, чтобы пакеты содержали адрес узла назначения и в то же время процент служебной информации не был большим по сравнению с размером поля данных пакета, в технологии ATM применен стандартный для глобальных вычислительных сетей прием - эти сети всегда работают по протоколу с установлением виртуального соединения и адреса конечных узлов используются только на этапе установления соединения. При установлении соединения ему присваивается текущий номер соединения и в дальнейших передачах пакетов в рамках этого соединения (то есть до момента разрыва связи) в служебных полях пакета используется не адрес узла назначения, а номер соединения, который намного короче. Размер пакета ATM является результатом компромисса между телефонистами и компьютерщиками - первые настаивали на пакете в 32 байта, а последние - на пакетах в 64 байта. В результате в пакете имеется небольшой заголовок в 5 байт, из которых 3 байта отводятся под номер виртуального соединения, уникального в пределах всей сети ATM, а остальные 48 байт могут содержать 6 замеров оцифрованного голоса или 6 байт данных вычислительной сети.. Небольшие пакеты фиксированной длины позволяют гарантировать небольшие задержки при передаче синхронного трафика. Ясно, что при отказе от жестко фиксированных временных слотов для каждого канала идеальной синхронности добиться будет невозможно. Однако, если пакеты разных видов трафика будут обслуживаться с разными приоритетами, то максимальное время ожидания приоритетного пакета будет равно времени обработки одного пакета, и если эти пакеты небольшого размера, то и отклонение от синхронизма будет небольшое.

Введение типов трафика и приоритетное обслуживание являются еще одной особенностью технологии ATM, которая позволяет ей успешно совмещать в одном канале синхронные и асинхронные пакеты. Приоритеты существуют и в других технологиях, например, в FDDI или 100VG-AnyLAN, однако наличие в них пакетов больших размеров (в 4096 байт и больше) не позволяют им с высокой степенью вероятности выдерживать требования синхронизма для высокоприоритетных пакетов.

В сетях ATM соединение конечного узла с сетью осуществляется индивидуальной линией связи, а коммутаторы соединяются между собой каналами с уплотнением, которые передают пакеты всех узлов, подключенных к соответствующим коммутаторам (рис. 3).

 

 

Рисунок 3 Структура сети ATM

 

. Сеть ATM имеет структуру, похожую на структуру телефонной сети - конечные станции соединяются с коммутаторами нижнего уровня, которые в свою очередь соединяются с коммутаторами более высоких уровней. Коммутаторы ATM пользуются адресами конечных узлов для маршрутизации трафика в сети коммутаторов. Коммутация пакетов происходит на основе идентификатора виртуального канала (Virtual Channel Identifier, VCI), назначается соединению при его установлении и уничтожается при разрыве соединения. Виртуальные соединения устанавливаются на основании длинных 20-байтных адресов конечных станций. Такая длина адреса рассчитана на очень большие сети, вплоть до всемирных. Адрес имеет иерархическую структуру, подобную номеру в телефонной сети и использует префиксы, соответствующие кодам стран, городов и т.п. Виртуальные соединения могут быть постоянными (Permanent Virtual Circuit, PVC) и коммутируемыми (Switched Virtual Circuit, SVC). Постоянные виртуальные соединения соединяют двух фиксированных абонентов и устанавливаются администратором сети. Коммутируемые виртуальные соединения устанавливаются при инициации связи между любыми конечными абонентами.

. Соединения конечной станции ATM с коммутатором нижнего уровня определяются стандартом UNI (User Network Interface). UNI определяет структуру пакета, адресацию станций, обмен управляющей информацией, уровни протокола ATM и способы управления трафиком. В настоящее время принята версия UNI 3.1.

Стек протоколов ATM

.

Формат ячейки ATM показан на рисунке 4, а стек протоколов ATM - на рисунке 5.

Стек протоколов ATM соответствует нижним уровням семиуровневой модели ISO/OSI и включает адаптационные уровни ATM, называемые AAL1-AAL5, и собственно уровень ATM. Адаптационные уровни транслируют пользовательские данные от верхних уровней коммуникационных протоколов в пакеты, формат и размеры которых соответствуют стандарту ATM. Каждый уровень AAL обрабатывает пользовательский трафик с определенными характеристиками. Уровень AAL1 занимается трафиком с постоянной битовой скоростью (CBR), который характерен, например, для цифрового видео и цифровой речи и чувствителен как к потере ячеек, так и к временным задержкам. Этот трафик передается в сетях ATM так, чтобы эмулировать обычные выделенные цифровые линии. Уровень 3/4 обрабатывает пульсирующий трафик с переменной битовой скоростью (VBR), обычно характерный для трафика локальных сетей. Этот трафик обрабатывается так, чтобы не допустить потерь ячеек, но ячейки могут задерживаться коммутатором. Уровень AAL3/4 выполняет сложную процедуру контроля ошибок при передаче ячеек для их гарантированной безошибочной доставки. Уровень AAL5 является упрощенным вариантом уровня AAL4, он работает быстрее.

 

Биты
                     
5 байт заголовка Управление потоком (GFC) Идентификатор виртуального пути (VPI) 1 Байты
Идентификатор виртуального пути (продолжение) Идентификатор виртуального канала (VCI) 2
Идентификатор виртуального канала (продолжение) 3
Идентификатор виртуального канала (продолжение) Тип данных (PTI) Приоритет потери пакета 4
Управление ошибками в заголовке (HEC) 5
  Данные пакета 6
...
53

Рисунок 4 Формат ячейки ATM

 

. Введение различных классов сервисов, реализуемых в стеке протоколов ATM адаптационными уровнями AAL, а также самим протоколом ATM, и позволяет реализовать в сетях ATM совместное сосуществование трафиков разной природы. Коммутаторы ATM, получая в поле типа данных ячейки (поле PTI) информацию о классе сервиса, принимает решение о приоритете обслуживания данной ячейки. Для того, чтобы каждый класс сервиса выполнялся с нужным уровнем качества, в технологии ATM предусмотрены достаточно сложные процедуры заказа качества обслуживания, которые выполняются между станцией и сетью при установлении соединения.


 

Верхние уровни сети Уровни адаптации ATM(AAL1-5) Подуровень конвергенции (CS) Общая часть подуровня конвергенции
Специфическая для сервиса часть
Подуровень сегментации и реассемблирования
Уровень ATM (маршрутизация пакетов, мультиплексирование, управление потоком, обработка приоритетов)
Физический уровень Подуровень согласования передачи
Подуровень, зависящий от физической среды

Рис. 5. Структура стека протоколов ATM

Классы сервиса

 

. В сети ATM каждый раз, когда приложению необходимо установить соединение между двумя пользователями, оно должно заказать вид сервиса, в соответствии с которым будет обслуживать трафик по данному соединению.. Классы сервиса ATM содержат ряд параметров, которые определяют гарантии качества сервиса. В спецификациях форума ATM предусмотрено несколько классов сервиса - CBR, VBR, UBR и ABR. Гарантии качества сервиса могут определять минимальный уровень доступной пропускной способности и предельные значения задержки ячейки и вероятности потери ячейки (таблица 1).

 

Таблица 1

Класс сервиса Гарантии пропускной способности Гарантии изменения задержки Обратная связь при переполнении
CBR + + -
VBR + + -
UBR - - -
ABR + + +

 

. Сервис CBR (constant bit rate, сервис с постоянной битовой скоростью) представляет собой наиболее простой класс сервиса ATM. Когда сетевое приложение устанавливает соединение CBR, оно заказывает пиковую скорость трафика ячеек (peak cell rate, PCR), которая является максимальной скоростью, которое может поддерживать соединение без риска потерять ячейку. Затем данные передаются по этому соединению с запрошенной скоростью - не более и, в большинстве случаев, не менее. Любой трафик, передаваемый станцией с большей скоростью, может сетью просто отбрасываться, а передача трафика сетью со скоростью, ниже заказанной, не будет удовлетворять приложение.

. CBR-соединения должны гарантировать пропускную способность с минимальной вероятностью потери ячейки и низкими изменениями задержки передачи ячейки. Когда приложение заказывает CBR сервис, то оно требует соблюдения предела изменения задержки передачи ячейки.

. Сервис CBR предназначен специально для передачи голоса и видео в реальном масштабе времени. Сервис CBR также подходит для эмуляции цифровых каналов типа T1/E1. Для соединений CBR нет определенных ограничений на скорость передачи данных, и каждое виртуальное соединение может запросить различные постоянные скорости передачи данных. Сеть должна резервировать полную полосу пропускания, запрашиваемую конкретным соединением.

. Класс трафика VBR (variable bit rate, сервис с переменной битовой скоростью) включает два подкласса: трафик VBR реального времени (VBR-RT) и трафик VBR не реального времени (VBT-NRT).

. Трафик VBR-RT допускает очень узкие границы для задержки передачи ячеек и может использоваться для передачи данных приложений реального времени, которые позволяют небольшое изменение задержки передачи ячеек, таких как видео, генерируемое кодеком с переменной скоростью данных или компрессированный видеотрафик, в котором удалены промежутки "молчания".

. Трафик VBR-NRT в свою очередь предъявляет менее жесткие требования к задержке передачи ячеек. Он специально предназначен для передачи коротких, пульсирующих сообщений, таких как сообщения, возникающие при обработке транзакций системами управления базами данных.

. По сравнению с сервисом CBR, VBR требует более сложной процедуры заказа соединения между сетью и приложением. В дополнение к пиковой скорости приложение VBR заказывает еще и другой параметр: длительно поддерживаемую скорость (sustained rate), которая представляет собой среднюю скорость передачи данных, которая разрешена приложению.. Пользователь может превышать скорость вплоть до величины PCR, но только на короткие периоды времени, а соединение VBR будет использовать среднее значение SCR для управления трафиком, снижая его интенсивность на соответствующие периоды времени.

. Как и при CBR-соединении, приложение и сеть должны прийти к соглашению относительно пиковой скорости PCR и допустимости задержек передачи ячеек. Но в отличии от CBR, соединение VBR должно установить временной предел - как долго могут передаваться данные на скорости PCR.. Когда этот предел, известный как допустимая пульсация, превышается, за ним должен следовать период более низкой активности станции, чтобы обеспечить заданный уровень SCR. Эти периоды низкой активности дают возможность другим видам трафика, таким как ABR, получить доступ к сети.. Как и в случае CBR, пользователи VBR получают гарантированное обслуживание в отношении потерь ячеек, изменения задержек передачи ячеек и доступной полосы пропускания до тех пор, пока трафик удовлетворяет определенным при соединении требованиям.

. Однако для многих приложений, которые могут быть чрезвычайно "взрывными" в отношении интенсивности трафика, невозможно точно предсказать параметры трафика, оговариваемые при установлении соединения. Например, обработка транзакций и трафик двух взаимодействующих локальных сетей непредсказуемы по своей природе, изменения трафика слишком велики, чтобы заключить с сетью какое-либо разумное соглашение.

. В результате администраторы сетей, ответственные за такие приложения, имеют три возможности. Они могут заплатить за дополнительную пропускную способность, которая может оказаться неиспользованной. Они могут попытаться управлять пульсациями трафика более тонко (сложная задача для большинства приложений). Или же они могут превысить скорость, оговоренную при установлении соединения, пренебрегая гарантированным качеством обслуживания.

. Для тех, кто выбирает последний вариант, последствия скорее всего будут и самыми тяжелыми - потеря ячеек. Потерянные ячейки должны быть повторно переданы узлом-отправителем. Для ответственных приложений это серьезная проблема, для низкоприоритетных приложений, таких как электронная почта, повторная передача ячеек является досадной потерей времени.

. В отличие от CBR и VBR, сервис UBR (unspecified bit rate, неопределенная битовая скорость) не определяет ни битовую скорость, ни параметры трафика, ни качество сервиса. Сервис UBR предлагает только доставку "по возможности", без гарантий по утере ячеек, задержке ячеек или границам изменения задержки. Разработанный специально для возможности превышения полосы пропускания, сервис UBR представляет собой частичное, но неадекватное решение для тех непредсказуемых "взрывных" приложений, которые не готовы согласиться с фиксацией параметров трафика.

. Главными недостатками подхода UBR являются отсутствие управления потоком данных и неспособность принимать во внимание другие типы трафика. Когда сеть становится перегруженной, UBR-соединения продолжают передавать данные. Коммутаторы сети могут буферизовать некоторые ячейки поступающего трафика, но в некоторый момент буфера переполняются и ячейки теряются. А так как UBR-соединения не заключали никакого соглашения с сетью об управлении трафиком, то их ячейки отбрасываются в первую очередь. Потери ячеек UBR могут быть так велики, что "выход годных" ячеек может упасть ниже 50%, что совсем неприемлемо.. Сервис ABR (available bit rate), подобно сервису UBR, использует превышение полосы пропускания, но он использует технику управления трафиком для оценки степени переполнения сети и избегает потерь ячеек.. ABR - это первый класс сервиса технологии ATM, который действительно обеспечивает надежный транспорт для приложений с пульсирующим трафиком за счет того, что он может находить неиспользуемые интервалы времени в трафике и заполнять их своими пакетами, если другим классам сервиса эти интервалы не нужны (рис. 6).

. Как и в сервисах CBR и VBR, при установлении соединения ABR заключается соглашение о пиковой скорости PCR. Однако, соглашение о пределах изменения задержки передачи ячеек или о параметрах пульсации не заключается. Вместо этого сеть и приложение заключают соглашение о требуемой минимальной скорости трафика. Это гарантирует приложению небольшую пропускную способность, обычно минимально необходимую для того, чтобы приложение работало. Пользователь соединения ABR соглашается не передавать данные со скоростью выше пиковой, то есть PCR, а сеть соглашается всегда обеспечивать минимальную скорость передачи ячеек - MCR (minimum cell rate).

. Скорость MCR вычисляется в ячейках в секунду, на основании способности приложения выдержать определенную задержку. Например, если приложению нужно передать файл в 1 Мбайт (около 20000 ячеек ATM) по крайней мере за 2 секунды, то требуемая скорость MCR для приложения составит 10000 ячеек в секунду.

. Если приложение при установлении ABR-соединения не определяет максимальную и минимальную скорости, то по умолчанию они принимаются равными скорости линии доступа станции к сети (для PCR) и нулю для MCR.. Пользователь соединения ABR получает гарантированное качество сервиса в отношении потери ячеек и пропускной способности. Что касается задержек передачи ячеек, то хотя они и сводятся к минимуму, но сервис ABR не дает абсолютных гарантий. Следовательно, сервис ABR не предназначен для приложений реального времени, а предназначен для приложений, в которых поток данных не очень чувствителен к задержкам в передаче.

Рисунок 6 Совместное использование полосы пропускания классами сервисов ATM

 

. CBR, VBR и UBR не пытаются управлять перегрузками в сети. CBR и VBR вместо этого полагаются на угрозу потери ячеек, которая должна пресечь попытки пользователя превысить пределы заказанной пиковой скорости. А сервис ABR может воспользоваться преимуществами неиспользуемой в данный момент пропускной способности сети, так как обладает достаточным интеллектом, чтобы понять, когда эта пропускная способность имеется в наличии. Он узнает об этом с помощью средств управления с обратной связью, техники, которая позволяет конечной станции узнавать состояние сети и решать, когда можно передавать данные быстро, а когда необходимо уменьшить скорость.

. Управление перегрузками в сервисах ABR стало возможным после появления спецификации форума ATM об управлении потоком на основе его интенсивности. Сервис ABR дает пользователям и операторам сети большую гибкость в определении сервиса. При использовании такого сервиса как VBR, когда коэффициент использования сети повышается, вероятность потерь ячеек также увеличивается. При использовании ABR, когда при увеличении коэффициента использования сети возрастают перегрузки, механизм управления перегрузками уменьшает скорость передачи данных в сеть. При этом несколько увеличиваются задержки, но потери ячеек не увеличиваются.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-10-21 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: