Соотношение неопределённостей Гейзенберга




ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Математический факультет

 

 

РЕФЕРАТ

"Современные проблемы квантовой механики"

 

 

студента 5 курса

Ткаченко Ивана Сергеевича

Специальность 010501 – "Прикладная математика и информатика"

 

 

Кемерово 2010


ВВЕДЕНИЕ

В истории развития физики было немало революций, кардинально изменявших научную парадигму и взгляды ученых на методы познания и устройство мира. Однако то, что произошло с естествознанием в первой четверти XX века, не было очередной сменой основных законов. Если раньше все в окружающем нас мире было предсказуемо, то с появлением квантовой механики он стал случайным. Мы постараемся разобраться, как же повлияла квантовая механика на дальнейшее развитие науки. Рассмотрим основные аспекты и главные проблемы квантовой механики, которые имеют место быть в настоящее время.

 


ПРЕДМЕТ КВАНТОВОЙ МЕХАНИКИ

Квантовая механика - теория, устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц. Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Квантовая механика позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе квантовой механики удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления, в которых законы квантовой механики непосредственно проявляются в поведении макроскопических объектов.

Ряд крупнейших технических достижений 20 в. основан по существу на специфических законах квантовой механики. Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантово-механическая теория излучения. Законы квантовой механики используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Таким образом, квантовая механика становится в значительной мере "инженерной" наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.

 

ИСТОРИЯ

Квантовая теория родилась в 1901 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением, вывод, который долгое время ускользал от других ученых. Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными некоторое время, так как противоречили классической физике. В 1905 г. Альберт Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта - испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении долгого времени было известно, что он распространяется как непрерывные волны, при поглощении и излучении проявляет дискретные свойства.

Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом разряде. Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален.

Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что "перескок" электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии ещё не давала систематической процедуры решения многих квантовых задач. Однако стало ясно, что классическая физика неспособна объяснить тот факт, что движущийся с ускорением электрон не падает на ядро, теряя энергию при излучении эл.-м. волн.

Новая существенная особенность квантовой теории проявилась в 1924 г., когда Луи де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. Таким образом в микромире стёрлась граница между классическими частицами и классическими волнами. В формулировке де Бройля частота, соответствующая частице, связана с её энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и её скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дж. Дэвиссоном и Лестером Х. Джермером в Соединенных Штатах и Джорджем Паджетом Томсоном в Англии.

В свою очередь это открытие привело к созданию в 1933 г. Эрнстом Руской электронного микроскопа. Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Эрвин Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая им в 1925 г., закончилась неудачей. Скорости электронов в теории Шрёдингера были близки к скорости света, что требовало включения в неё специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.

Одной из причин постигшей Шрёдингера неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка, однако такое сравнение не совсем корректно), о котором в то время было мало известно. Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой. Вторая попытка увенчалась выводом волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории. В настоящее время волновая функция лежит в основе квантовомеханического описания микросистем, подобно уравнениям Гамильтона в классической механике.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента, так как по его соображениям микромир имеет принципиально иное устройство, чем макромир в виду особой роли постоянной Планка, несущественной в мире больших величин.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку её математический аппарат был им более знаком, а её понятия казались более "физическими"; операции же над матрицами - более громоздкими.

Вскоре после того, как Гейзенберг и Шрёдингер разработали квантовую механику, Поль Дирак предложил более общую теорию, в которой элементы специальной теории относительности Эйнштейна сочетались с волновым уравнением. Уравнение Дирака применимо к частицам, движущимся с произвольными скоростями. Спин и магнитные свойства электрона следовали из теории Дирака без каких бы то ни было дополнительных предположений. Кроме того, теория Дирака предсказывала существование античастиц, таких, как позитрон и антипротон, - двойников частиц с противоположными по знаку электрическими зарядами.

 

КВАНТОВЫЕ ПОРЦИИ

Одной из первых проблем, для решения которой понадобилось введение кванта энергии, было рассмотрение сосуществования частиц и полей и построение теории теплового излучения. Это излучение можно почувствовать не только под ярким летним солнцем, но и поднеся руку к обычной лампочке или горячему утюгу. Однако попытки объяснить такие обыденные явления в рамках классической теории оказались несостоятельными.

В 1900 году Джон Рэлей и Джеймс Джинс, используя классическую теорию, рассмотрели нагретое тело, в котором электромагнитное поле (волны) находилось в тепловом равновесии с частицами. Оказалось, что в этом случае поле забирает у частиц всю их энергию. Тем самым классическая теория приводила к бессмысленному результату: нагретое тело, непрерывно теряя энергию из-за излучения волн, должно охладиться до абсолютного нуля. Этот физически абсурдный результат получил название "ультрафиолетовой катастрофы". В действительности ничего подобного, естественно, не происходит. Наблюдения показали, что на высоких частотах энергия излучения не возрастает бесконечно, а убывает до нуля. Максимальное излучение при фиксированной температуре приходится на определенную частоту или цвет. Примерами этого могут служить красный цвет раскаленной кочерги (температура около 1 000 К) или желто-белый цвет Солнца (около 6 000 К).

Частный, казалось бы, вопрос об излучении электромагнитных волн нагретыми телами приобрел принципиальное значение. Классическая теория приводила к результатам, резко противоречащим опыту. В 1900 году, чтобы добиться согласования теории с опытом, Максу Планку пришлось отступить от классического подхода лишь в одном пункте. Он использовал гипотезу, согласно которой излучение электромагнитного поля может происходить только отдельными порциями - квантами. Принятая Планком гипотеза противоречила классической физике, однако построенная им теория теплового излучения превосходно согласовывалась с экспериментом.

 

ЭФФЕКТ КОМПТОНА

Вещество может не только излучать, но и поглощать электромагнитные волны. Процесс поглощения, исходя из классических представлений, также оказался не совсем понятным. В начале прошлого века уже умели изготавливать электровакуумные лампы и знали, что при освещении катода светом такой лампы происходит испускание электронов. Это явление назвали внешним фотоэффектом. Все попытки описать его на основе классической теории, в которой свет рассматривался как электромагнитная волна, оказались безрезультатными. Не удавалось объяснить основное свойство фотоэффекта - тот факт, что энергия вылетающих электронов определяется только частотой падающего света и не зависит от его интенсивности.

В 1905 году, через 5 лет после опубликования работы Макса Планка, для объяснения фотоэффекта была применена гипотеза квантов. Из того, что свет, как показал Планк, излучается порциями (квантами), еще не следует дискретная (порционная) структура самого света. Альберт Эйнштейн предположил, что дискретность (разделенность на порции) излучения должна проявляться не только при излучении, но и при поглощении и распространении электромагнитных волн.

Под напором экспериментальных фактов ученые были вынуждены ввести представление о свете как о потоке частиц. Однако еще в начале ХIХ века Томас Юнг экспериментально доказал волновую природу света, а в конце XIX века Джеймс Максвелл теоретически обосновал, что свет представляет собой волны, то есть колебания электромагнитного поля. Каким же образом свет может быть одновременно и частицами, и волнами? Ведь и частица, и волна представляются совершенно не похожими друг на друга. Тем не менее одни экспериментальные факты явно указывают на то, что свет - это поток частиц, а другие на то, что свет - это волны. Возникло логическое противоречие: для объяснения одних явлений свет необходимо было описывать как волны, а для объяснения других - как частицы.

Таким образом, выяснилось, что представления о "частице" и "волне" лишь в какой-то степени отражают реальность. Открытие двойственности (дуализма) свойств света в период формирования новой физики имело огромное значение. Именно попытки объяснить этот дуализм и породили современную квантовую теорию.

Окончательное доказательство существования квантов света было получено в 1922 году американским физиком Артуром Комптоном. Его эксперимент показал, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Теперь это явление называется эффектом Комптона.

 

НЕУСТОЙЧИВЫЙ АТОМ

Про то, что существуют минимальные, далее неделимые, частицы материи, говорили еще древние греки. К концу XIX века уже почти никто из ученых не сомневался в реальности атомов, но было непонятно, как они устроены и из чего состоят. Существовало много разных гипотез, но только в 1911 году, после опытов английского физика Эрнеста Резерфорда по обстрелу атомов золота а-частицами, родилась планетарная модель атома. Согласно этой модели в центре атома, подобно маленькому солнцу, располагалось ядро. Вокруг ядра, сходно планетам, обращались электроны, удерживаемые электромагнитными силами. Планетарная модель позволила объяснить результаты опытов, но оставался непонятным факт существования атома. Согласно классической теории электрон, вращающийся в атоме, должен излучать электромагнитные волны. Излучение сопровождается потерей энергии. Теряя энергию, электрон должен в конце концов упасть на ядро, а атом - прекратить свое существование.

Выход из этого "тупика" был предложен в 1913 году датским физиком Нильсом Бором. В своей модели Бор рассматривал электроны как классические частицы, движущиеся вокруг маленького массивного ядра под влиянием электрического поля. Однако вопреки законам классической физики Бор предположил существование в атоме стационарных (не меняющихся во времени) состояний, каждому из которых соответствует определенная энергия. В стационарных состояниях электрон не излучает. Излучение и поглощение света происходят лишь в том случае, когда атом переходит из одного состояния в другое.

 

ВОЛНОВАЯ ТЕОРИЯ БРОЙЛЯ

Сначала только свету приписывалось такое странное свойство - быть одновременно и волной, и частицей. Вещество же рассматривалось как система обычных точечных частиц. В 1923 году Луи де Бройль выдвинул гипотезу об универсальности дуализма волна-частица. Согласно этому предположению не только фотоны, но и электроны, а также любые другие частицы обладают волновыми свойствами. И это касается как микроскопически малых атомов и молекул, так и любых других окружающих нас макроскопических объектов.

Основным признаком волн является их способность интерферировать, то есть складываться и вычитаться. Другими словами, если вещество обладает волновыми свойствами, то для него должны наблюдаться явления дифракции (огибание волнами встречающихся на пути препятствий) и интерференции (сложения и вычитания волн).

Прямое экспериментальное доказательство того, что электроны могут дифрагировать и интерферировать, было получено в 1927 году в опытах Клинтона Дэвиссона и Лестера Джемера, а также, независимо от них, в экспериментах Джорджа Томсона. В настоящее время экспериментаторы наблюдают интерференцию и других частиц, вплоть до молекул. Так, в 2003 году в Институте экспериментальной физики Венского университета была впервые обнаружена квантовая интерференция органических молекул биологического происхождения C4444H3 0N4, содержащих 44 атома углерода, 30 атомов водорода и 4 атома азота. В связи с этими экспериментами возникает вопрос: возможна ли квантовая интерференция живых существ?

После выдвижения де Бройлем гипотезы об универсальности дуализма волна-частица и экспериментального подтверждения наличия у частиц вещества волновых свойств возникли новые принципиальные проблемы. Стало необходимым совместить волновую природу частиц с привычными представлениями о размещении (локализации) частиц в пространстве.

 

Соотношение неопределённостей Гейзенберга

Принцип неопределённости Гейзенберга - в квантовой физике так называют закон, который устанавливает ограничение на точность (почти)одновременного измерения переменных состояния, например, положения и импульса частицы. Кроме того, он точно определяет меру неопределённости, давая нижний (ненулевой) предел для произведения дисперсий измерений.

Рассмотрим, например, серию следующих экспериментов: путём применения оператора, частица приводится в определённое чистое состояние, после чего выполняются два последовательных измерения. Первое определяет положение частицы, а второе, сразу после этого, её импульс. Предположим также, что процесс измерения (применения оператора) таков, что в каждом испытании первое измерение даёт то же самое значение, или по крайней мере набор значений с очень маленькой дисперсией dp около значения p. Тогда второе измерение даст распределение значений, дисперсия которого dq будет обратно пропорциональна dp.

В терминах квантовой механики, процедура применения оператора привела частицу в смешанное состояние с определённой координатой. Любое измерение импульса частицы обязательно приведёт к дисперсии значений при повторных измерениях. Кроме того, если после измерения импульса мы измерим координату, то тоже получим дисперсию значений.

В более общем смысле, соотношение неопределённости возникает между любыми переменными состояния, определяемыми некоммутирующими операторами. Это - один из краеугольных камней квантовой механики, который был открыт Вернером Гейзенбергом в 1927 г.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: