Подшипники качения. Классификация и устройство подшипников




Подшипники скольжения

 

Опоры механизмов должны обеспечить наибольшую точность перемещения, минимальные потери на трение, быть надежными в работе, сохранять возможность вращения при изменении температуры рабочей среды, виброустойчивы. Опоры скольжения появились значительно раньше опор качения. В зависимости от формы рабочей поверхности опоры скольжения выполняют цилиндрическими, коническими и сферическими. Наибольшее распространение получили цилиндрические опоры. Их простейшим видом может быть отверстие (рис. 1, а) под цапфу непосредственно в корпусе либо в другой детали, поддерживающей вал или ось. Если материал детали, поддерживающей вал или ось, не обладает хорошими антифрикционными свойствами, легко подвергается износу, в него запрессовывают втулки, конструкции которых показаны на рис. 1. Они могут воспринимать радиальные (рис. 1, а, б), радиальные и осевые нагрузки (рис. 1, в, г), регулировать осевое смещение вала (рис. 1, г).

Материал втулки должен быть износостойким, хорошо прирабатываться и иметь в паре с материалом цапфы минимальный коэффициент трения. Для стальных цапф этим условиям удовлетворяют: при высоких давлениях и малых окружных скоростях – бронза БрАЖ9-4 и латунь ЛС59-1; при высоких давлениях и скоростях – бронза БрОФ10-1 и БрОЦС-5-5-5; при небольших давлениях и скоростях – металлокерамические материалы, имеющие пористую структуру и хорошо удерживающие смазку; различные пластмассы – текстолит, фторопласт и др.

 

г
в
б
а

Рис 1

 

К достоинствам пластмасс помимо самосмазываемости необходимо отнести большие демпфирующие способности при действии вибраций и ударов, диэлектричность, антикоррозийность, технологичность изготовления, небольшую массу и стоимость. Недостатками пластмассовых опор скольжения прежде всего являются невысокая износостойкость, низкая теплопроводность, гигроскопичность и нестабильность размеров.

Цилиндрические опоры в отличие от конических мало чувствительны к изменению температуры из-за наличия зазоров между цапфой и подшипником, наиболее просты по конструкции. Конические опоры могут воспринимать как радиальную, так и осевую нагрузку, более сложны и дороже, имеют большие потери на трение. Сферические или шаровые опоры применяют, если при эксплуатации и сборке может иметь место перекос оси вала по отношению к оси подшипника.

Опоры скольжения имеют следующие достоинства: малые радиальные размеры, допускают высокие частоты вращения, возможность работы в воде и агрессивных средах, устойчивы к вибрациям и ударам. К недостаткам их следует отнести: большие потери на трение и небольшой КПД, сравнительно большие осевые размеры, неравномерный износ подшипника и цапфы, необходимость использования дорогостоящих антифрикционных материалов и смазки.

Подшипники скольжения различают с сухим, граничным и жидкостным трением. Сухое трение имеет место при отсутствии смазки между контактирующими поверхностями. Для уменьшения трения применяются различные виды покрытий металлических вкладышей подшипника – сульфидирование, сульфационирование, нанесение пленок свинца, галлия, палладия, фторопласта, порошка графита, двусернистого молибдена, нитрата бора.

В подшипниках жидкостного трения трущиеся поверхности полностью разделены слоем жидкой смазки или газа. Различают гидростатические и гидродинамические подшипники. В гидро- и аэростатических подшипниках разделение трущихся поверхностей достигают путем подачи в зону контакта жидкости или газа под давлением, уравновешивающем вал. В гидро- и аэродинамических подшипниках цапфа вала располагается во втулке подшипника с зазором. При движении жидкая или газообразная (воздух) смазка увлекается в клиновидный зазор за счет прилипания к поверхности цапфы, разделяет поверхности трения и при определенной скорости вращения создает давление, уравновешивающее внешнюю нагрузку (цапфа всплывает).

Наиболее часто применяются подшипники скольжения с граничным трением, когда слой жидкости не полностью разделяет трущиеся поверхности и имеет место частичный контакт между цапфой и втулкой. При жидкостном и граничном условиях работы применяются жидкие минеральные и консистентные (густые) смазки.

Часто конструкции опор предусматривают подвод смазки и наличие специальных канавок для подачи смазки на трущиеся поверхности. Широко используют подшипники, вкладыши которых изготовлены методами порошковой металлургии из порошков соответствующих сплавов. Смазочная жидкость, заполнившая при пропитке поры такого вкладыша, обеспечивает смазку подшипника на все время его работы.

Основными видами разрушения подшипников скольжения являются износ, задиры и контактные усталостные повреждения поверхности втулки (выкрашивание в виде раковин или отслаивание, шелушение материалов).

Расчет цилиндрических подшипников, не работающих в условиях жидкостного трения, сводится к определению диаметра цапфы (d) и ее длины (ℓ) из условий ограничения среднего давления (q) на втулку (1); нагрева и износа (9.2), пропорционального удельной работе трения (qv):

q = Fr/dℓ £ qadm, (1)

qv £ (qv)adm, (2)

v = , (3)

где Fr – радиальная нагрузка на опору, Н; v – окружная скорость вала, м/с; d и – диаметр и длина рабочих поверхностей опоры, мм; n – частота вращения вала, об/мин; qadm, (qv)adm – допускаемые значения соответственно удельного давления и удельной работы трения материала втулки. Их значения для ряда материалов при стальных цапфах приведены в табл. 1.

Для сопряжения цилиндрических цапф с втулкой при граничном трении назначаются посадки с зазором в системе отверстия. Величина зазора тем больше, чем выше окружная скорость. При высоких скоростях рекомендуют посадки H8/e7; при средних и малых скоростях – H7/e7, H7/f7, H7/g7; при малых скоростях и высокой точности сопряжения – H7/g6, H6/g5. Для уменьшения трения и износа шероховатость трущихся поверхностей рекомендуют принимать в пределах Ra = (1,25 … 0,32) мкм.

 

Таблица 1

Значения qadm, (qv)adm при стальных цапфах

Наименование материала втулки подшипника qadm, МПа (qv)adm, МПа∙м/с
Бронза Бр АЖ 9-4    
Бронза Бр ОЦС 5-5-5    
Капрон    
Текстолит    

 

Подшипники качения. Классификация и устройство подшипников

 

Подшипник качения представляет собой готовый стандартный узел, основными элементами которого являются тела качения – шарики или ролики различной формы, установленные между кольцами – наружным и внутренним. Внутреннее кольцо насаживается на вал или ось, наружное – устанавливается в корпусе механизма. В процессе работы тела качения катятся по беговым дорожкам колец, геометрическая форма которых определяется формой тел качения. Для равномерного распределения тел качения между кольцами служит сепаратор. Основными размерами подшипника качения (рис. 2) являются внутренний и наружный диаметры, ширина. Обычно подвижным является внутреннее кольцо, а наружное – неподвижной деталью. Бывают более сложные по конструкции подшипники, включающие дополнительно защитные шайбы, уплотнения, крепежные втулки и другие элементы.

 

Рис. 2

 

К достоинствам подшипников качения относятся: малые потери на трение, невысокая стоимость вследствие их массового производства, широчайший диапазон размеров и типов, высокая степень взаимозаменяемости, простота монтажа и обслуживания, малая разница момента трения при пуске и установившемся движении, небольшие осевые размеры.

Недостатками подшипников качения являются сравнительно большие радиальные размеры, высокая чувствительность к ударным и вибрационным нагрузкам из-за жесткости конструкции, значительно меньшая по сравнению с подшипниками скольжения долговечность при больших частотах вращения и больших нагрузках.

По форме тел качения различают шариковые и роликовые подшипники. Последние могут быть с цилиндрическими (а), коническими (б), бочкообразными (в) и игольчатыми (г) роликами (см. рис. 2).

По направлению воспринимаемой нагрузки подшипники бывают радиальные (рис. 3, а), радиально-упорные (рис. 3, б) и упорные (рис. 3, в); по числу рядов тел качения – одно-, двух- и четырехрядные; по способности самоустанавливаться – не- и самоустанавливаемые.

Подшипники с одинаковым диаметром (d) внутреннего кольца подразделяются в зависимости от диаметра наружного кольца на следующие серии: сверхлегкую, особо легкую, легкую, среднюю и тяжелую. В зависимости от ширины кольца (В) подшипники делят на узкие, нормальные, широкие и особо широкие.

Подшипники разных типов, размеров и серий имеют различные грузоподъемность и быстроходность. Подшипники более тяжелых серий менее быстроходны, но имеют более высокую грузоподъемность. Шариковые подшипники имеют большую быстроходность по сравнению с роликовыми подшипниками, однако последние обладают большей грузоподъемностью.

При высокой частоте вращения и действии небольших нагрузок целесообразно использовать подшипники сверхлегкой и особо легкой серий. Для восприятия повышенных нагрузок при высокой частоте вращения используют подшипники легкой серии. Наиболее часто применяют на практике подшипники легкой и средней серий, нормальные по ширине.

Подшипники изготавливаются следующих классов точности в порядке ее повышения: 0 (нормальный), 6 (повышенный), 5 (высокий), 4 (особо высокий), 2 (сверхвысокий).

Выбор класса точности подшипника производится в зависимости от требований, предъявляемых к механизму. Например, подшипники класса 0 используются в механизмах, к точности которых особых требований не предъявляют; подшипники класса 6 применяют в тех случаях, когда потери на трение в опорах должны быть минимальны; классы 5, 4 и 2 предназначены для механизмов, точность которых является основной характеристикой функционирования. Увеличение точности подшипника приводит к росту его стоимости:

 

Класс точности          
Сравнительная стоимость   1,92      

 

Чаще всего используют подшипники нормальной точности – класса 0.

Шариковый радиальный однорядный подшипник (см. рис. 2, а) является наиболее распространенным. Он предназначен для радиальной нагрузки, но может воспринимать и осевую в пределах 70% от неиспользованной радиальной допускает перекос осей колец не более 0,25°. При равных габаритных размерах из всех конструкций подшипников качения он имеет минимальные потери на трение и возможность наибольшей скорости вращения. Подшипник обеспечивает осевое фиксирование вала в двух направлениях.

Радиально-упорные подшипники (рис. 3, б) воспринимают радиальную и осевую нагрузку (косозубые, конические и червячные передачи), действующую на вал. Одинарный подшипник может воспринимать чисто осевую нагрузку, действующую в одном направлении. Подшипники, смонтированные попарно, воспринимают осевые усилия, действующие в обоих направлениях.

 

Рис. 3

 

Шариковые радиальные 2-рядные сферические подшипники могут работать при значительном перекосе до 3° осей внутреннего и наружного колец, обладают способностью самоустанавливания оси вала относительно корпуса. Величина осевой нагрузки, действующей одновременно с радиальной, не должна превышать 20% от неиспользованной допустимой радиальной нагрузки.

Тела качения и кольца подшипников качения изготавливают из высокоуглеродистых шарикоподшипниковых хромистых сталей ШХ9, ШХ15 с термообработкой до твердости 60 … 65 HRCэ и последующим шлифованием и полированием, в некоторых случаях используют стали других марок (нержавеющие, жаропрочные и др.); сепараторы делают из низкоуглеродистой мягкой листовой стали, массивные сепараторы – из бронзы, латуни, алюминиевых и магниевых сплавов, пластмасс. При антикоррозионных и антимагнитных требованиях детали подшипников выполняются из беррилиевой бронзы БрБ-2, нержавеющих немагнитных сталей.

Уменьшение радиальных размеров подшипников возможно как за счет минимизации размеров тел качения (игольчатые подшипники), так и за счет исключения из классической конструкции подшипника внутреннего и наружного колец. Применяются стандартные игольчатые подшипники, состоящие только из тел качения, расположенных в массивном сепараторе; нестандартные насыпные шарикоподшипники, в которых отсутствует сепаратор, роль внутреннего и наружного колец таких подшипников выполняют цапфа вала и неподвижная крышка корпуса, параметры твердости и точности которых должны соответствовать таким же параметрам колец стандартных подшипников.

В подшипниках качения смазка уменьшает трение, шум, отводит тепло, защищает подшипник от коррозии, заполняет зазоры в уплотнениях, обеспечивая герметизацию подшипникового узла. Применяют жидкие, консистентные и твердые смазки.

Жидкие смазки используют при окружной скорости вала выше 10 м/с. Чаще всего применяют минеральные масла: приборное МВП, индустриальное 12 (веретенное), индустриальное 20 и масла с антифрикционными присадками (дисульфит молибдена, графита).

Консистентные смазки (густые мази) применяют при окружной скорости вала до 10 м/с. Корпус подшипникового узла заполняют смазкой в объеме 1/3 его свободного пространства. Наилучшими признаны литиевые смазки: Литол-24, Циатим-221, Циатим-201 и др. Они хорошо удерживаются в узлах трения и не требуют сложных уплотнений, их не рекомендуют применять при большом тепловыделении

Твердые смазки используются в вакууме и специальных средах (графит, дисульфит молибдена, нитрат бора). При повышенных температурах (140 … 275 °С) возможно применение массивных сепараторов из самосмазывающихся пластмасс (Вилан, Тесам-4, фторопласты). Ресурс подшипника определяется временем до повреждения перемычек сепаратора.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: