Тема 2 Определенный интеграл




Математический анализ: Методические рекомендации по выполнению домашней контрольной работы / М.А.Сагадеева - Челябинск: ЧОУ ВПО «Южно-Уральский институт управления и экономики», 2012.- 26 с.

 

Математический анализ: Методические рекомендации по выполнению домашней контрольной работы: 080100.62 «Экономика»

 

 

ã Издательство ЧОУ ВПО «Южно-Уральский институт управления и экономики», 2012

СОДЕРЖАНИЕ

 

 

ВВЕДЕНИЕ. 4

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ ЗАДАНИЙ.. 5

ЗАДАНИЯ ДЛЯ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ.. 15

РЕКОМЕНДУЕМЫЙ СПИСОК ЛИТЕРАТУРЫ.. 22

 


 

ВВЕДЕНИЕ

Цель курса математический анализ в системе подготовки – освоение необходимого математического аппарата.

Задачи изучения математического анализа как фундаментальной дисциплины состоят в развитии логического и алгоритмического мышления, в выработке навыков решения основных задач математического анализа, что в конечном итоге формирует навык исследования моделей реальных процессов.


МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ ЗАДАНИЙ

Раздел IИНТЕГРАЛЬНОЕ ИCЧИЛЕНИЕ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Тема 1 Неопределенный интеграл

 

Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла (с доказательством). Таблица основных интегралов. Интегрирование методом разложения, замены переменной и по частям. Понятие о «неберущихся» интегралах. (1, гл. 10, § 10.1–10.5, 10.8; с. 247–265); (2, гл. 10); (3,гл.9).

Студенту необходимо, прежде всего, разобраться в принципиальном вопросе: интегральное исчисление решает обратную задачу – нахождение самой функции по ее производной. Эта задача является более сложной по сравнению с задачей дифференцирования.

Понятие первообразной функции (1, с.251) связывается геометрической интерпретацией, когда первообразные отличаются на число (константу). Отсюда следует определение неопределенного интеграла, как «совокупность всех первообразных для функции f(x) на промежутке Х (ось абсцисс)».

òf(x)dx=F(x)+C, f(x) – подинтегральная функция, f(x)dx – подынтегральное выражение, F(x) – первообразная функция, ò – знак интеграла, С – константа.

Следует изучить свойства (с доказательствами) неопределенного интеграла (1, с.253, 254), знать табличные интегралы (1, с.255). Обратить внимание на свойство 2 (1, с.253): дифференциал неопределенного интеграла равен подынтегральному выражению d(òf(x)dx)=f(x)dx, то есть операции интегрирования и дифференцирования взаимно обратны (знаки d и ò взаимно уничтожают друг друга).

Непосредственное интегрирование предполагает (1, примеры 1.10–10.3, с.255–257) сведение интегралов к табличным за счет тождественных преобразований и основных правил интегрирования.

Для вычисления интегралов применяют линейную подстановку t=kx+b, а также другие подстановки:

а) переменная интегрирования х заменяется функцией переменной t: x=j(t), а dx=j¢(t)dt; òf(x)dx=òf(j(t))j¢(t)dt;

б) новая переменная t вводится как функция переменной интегрирования x: t=j(x), dt=j¢(x)dx; òf(j(x))j¢(x)dx=òf(t)dt.

Последнюю подстановку удобно применять, если подынтегральное выражение содержит дифференциал (производную) функции j(х) с точностью до постоянного множителя.

Если интеграл, полученный после замены переменной, стал «проще» данного (преобразован в табличный или приводящийся к табличному), то цель подстановки достигнута.

После интегрирования функции по переменной t необходимо вернуться к прежней переменной х, выразив t через хпо формуле, применявшейся при подстановке.

Примеры различных подстановок даны в (1, § 10.3, 10.6).

Практическое применение формулы интегрирования по частям ((10.21), с. 263), если оно целесообразно, связано с проблемой правильного разбиения подынтегральноговыражения на сомножители u и dv. Отметим, что формулу интегрирования по частям, как правило, удобно применять, если подынтегральная функция является произведением многочлена на показательную или логарифмическую функцию (1, примеры 10.10–10.13, с. 263-269).

Рекомендуется разобрать задачи с решениями N 10.1–10.4, 10.6–10.8, 10.9-10.11, 10.13, 10.14, 10.18а, 10.23, 10.24а, 10.25-10.27 и задачи для самостоятельного решения N 10.33-10.39, 10.41-10 45, 10 47–10.54, 10.55–10.59, 10.61, 10.63-10.65, 10.68–10.70 по учебнику (1) и аналогичные задачи по практикуму (2), обратив особое внимание на интегрирование методом подстановки.

 

Тема 2 Определенный интеграл

 

Задача о вычислении площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Формула Ньютона – Лейбница. Свойства определенного интеграла. Вычисление определенного интеграла методом замены переменной и по частям. Понятие о несобственных интегралах с бесконечными пределами интегрирования. Вычисление площадей плоских фигур. Приближенное вычисление определенного интеграла по формуле трапеций. (1, гл.11, § 11.1-11.8, 11.10; с. 283–10, 312–314, 318–321); (2, гл. 11).

Студенту необходимо рассмотреть задачу о площади криволинейной трапеции и разобраться в том, что площадь криволинейной трапеции есть предел площади S под ломанной при неограниченном приближении ломанной к заданной кривой.

Необходимо разобраться с понятием интегральной суммы, ее геометрическим смыслом и перейти к понятию определенного интеграла (1, с.283–285).

Студент должен знать, что в отличие от неопределенного интеграла, который является семейством кривых, определенный интеграл является числом и определенный интеграл вычисляется формулой Ньютона-Лейбница.

Благодаря этой формуле (1,ф.1.15) интеграл вычисляется путем нахождения приращения первообразной для данной функции на отрезке интегрирования.

Достаточное условие интегрируемости функции на отрезке – непрерывность функции на этом отрезке.

Студент должен разобраться в методах интегрирования, изучив для этого свойства определенного интеграла и теорему о среднем (1, с.289–291).

Метод интегрирования по частям позволяет расширить класс интегрируемых функций за пределы табличных интегралов(1, с. 241–245). При этом необходимо использовать приемы интегрирования по частям для неопределенного интеграла.

Метод подстановки также расширяет класс интегрируемых функций. При этом нужно помнить, что при введении новой переменной изменяются пределы интегрирования. После их изменения можно рассчитать определенный интеграл, не возвращаясь к старой переменной (1, пример 11.4), (2,с.259).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: