В виду технической невозможности проведения контрольных замеров давления в точках подключения к магистральным трубопроводам потребителей 1 и 2, измерения давлений производилось на источнике (теплопункт Беловской ГРЭС) и у потребителя 3 (подкачивающая насосная станция ПНС-23).
Величины давлений теплоносителя на ПНС-23 полученные расчетным путем не совпадают с результатами измерений.
Таблица 3.1. Давления теплоносителя на ПНС-23
Результаты расчета | Результаты измерений | ||
Рпр, МПа | Робр, МПа | Рпр, МПа | Робр, МПа |
0,513 | 0,296 | 0,49 | 0,32 |
Фактические потери давления в прямом и обратном трубопроводах тепломагистрали №2 на участке 0 – 3 (Беловская ГРЭС – ПНС-23) превышают расчетные на 0,023 МПа на подающем трубопроводе и на 0,024 МПа на обратном (~ 14% от величины расчетных потерь). Вероятными причинами этого могут быть:
· отложение загрязнений на внутренней поверхности трубопроводов;
· несоответствие фактических диаметров трубопроводов проектным;
· наличие неучтенных местных сопротивлений.
Для уточнения причин повышенных потерь давления были произведены дополнительные измерения.
При помощи толщиномера ультразвукового «ВЗЛЕТ УТ», зарегистрированного в Государственном реестре средств измерений РФ под № 18810-05 (сертификат об утверждении типа средств измерений RU.С.27.022.А № 20277), в нескольких точках тепломагистрали были произведены замеры толщины стенки трубы. На подающем трубопроводе толщина стенки составила мм (то есть отклонение составляет ~1%), на обратном трубопроводе толщина стенки составила
мм (то есть отклонение составляет ~0,9%). Ввиду того, что толщина стенки имеет малое отклонение от паспортных характеристик трубопроводов, ее вариация не может быть основной причиной повышенных потерь давления в теплосети.
При помощи штангенциркуля с пределом измерений 500 мм и ценой деления 0,1 мм были произведены измерения диаметров трубопроводов в нескольких точках тепломагистрали. Получены следующие данные: на подающем трубопроводе мм, на обратном трубопроводе
. Ввиду того, что отклонение диаметра трубопроводов не превышает 0,8%, то это не может являться основной причиной повышенных потерь давления в теплосети.
Оценка шероховатости внутренней поверхности труб, ввиду отсутствия специализированной инструментальной базы, производилась при помощи расходомера-счетчика ультразвукового портативного «ВЗЛЕТ ПР» (сертификат России об утверждении типа средств измерений RU.С29.006.А № 8881/1 и зарегистрирован в Государственном реестре средств измерений РФ под № 20294-00). Расходомер-счетчик ультразвуковой портативный «ВЗЛЕТ ПР» не позволяет напрямую измерять величину шероховатости стенки трубы, но позволяет произвести ее косвенную сравнительную оценку по форме осциллограммы сигнала расходомера.
![]() | ![]() | ||||||||||
![]() | |||||||||||
| |||||||||||
|
| ||||||||||
![]() |
Рисунок 3.1. Эталонная осциллограмма «незашумленного» сигнала.
| |||||||||||
| |||||||||||
![]() | ![]() | ![]() | |||||||||
| |||||||||||
|
|
На рисунке 3.1 представлена осциллограмма сигнала расходомера-счетчика ультразвукового портативного «ВЗЛЕТ ПР», полученная при измерении расхода на трубопроводах с чистой внутренней поверхностью, без отложений. На графике присутствуют две группы сигналов:
- зондирующий импульс, посылаемый излучателем расходомера;
- отраженный сигнал, характеризующий величину расхода жидкости.
На рисунке 3.2 представлена осциллограмма сигнала расходомера-счетчика ультразвукового портативного «ВЗЛЕТ ПР», полученная при измерении расхода на трубопроводах тепломагистрали №2 тепловых сетей поселка Инской. На графике хорошо заметны:
- зондирующий импульс, посылаемый излучателем расходомера;
- отраженный сигнал, характеризующий величину расхода жидкости;
- импульсы «шума».
Импульсы «шума» появляются в случаях:
- отложений на внутренних стенках труб теплосетей,
- появления коррозии внутренних стенок труб теплосетей,
- наличия мелких внутренних дефектов стенки трубы.
Конкретизировать причины возникновения «шума» на осциллограмме можно вскрыв трубопроводы в неотопительный период.
Рисунок 3.3. Осциллограммы сигналов расходомера «ВЗЛЕТ ПР»