СРАВНЕНИЕ РОССИЙСКИХ ТЭЦ С ИНОСТРАННЫМИ





ОГЛАВЛЕНИЕ

 

ВВЕДЕНИЕ. 4

1 ТЕПЛОЭЛЕКТРОЦЕНТРАЛИ.. 5

1.1 Общая характеристика. 5

1.2 Принципиальная схема ТЭЦ.. 10

1.3 Принцип работы ТЭЦ. 11

1.4 Расход теплоты и КПД ТЭЦ…………………………………………………..15

2 СРАВНЕНИЕ РОССИЙСКИХ ТЭЦ С ИНОСТРАННЫМИ.. 17

2.1 Китай. 17

2.2 Япония. 18

2.3 Индия. 19

2.4 Великобритания. 20

ЗАКЛЮЧЕНИЕ. 22

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 23

 


 

ВВЕДЕНИЕ

 

ТЭЦ — основное производственное звено в системе централизованного теплоснабжения. Строительство ТЭЦ — одно из основных направлений развития энергетического хозяйства в СССР и др. социалистических странах. В капиталистических странах ТЭЦ имеют ограниченное распространение (в основном промышленные ТЭЦ).

Теплоэлектроцентрали (ТЭЦ)- электрические станции с комбинированной выработкой электрической энергии и тепла. Они характеризуются тем, что тепло каждого килограмма пара, отбираемого из турбины, используется частично для выработки электрической энергии, а затем у потребителей пара и горячей воды.

ТЭЦ предназначена для централизованного снабжения промышленных предприятий и городов теплом и электроэнергией.

Технически и экономически обоснованное планирование производства на ТЭЦ позволяет достигнуть наиболее высоких эксплуатационных показателей при минимальных затратах всех видов производственных ресурсов, т. к. на ТЭЦ тепло «отработавшего» в турбинах пара используется для нужд производства, отопления и горячего водоснабжения.

 


 

ТЕПЛОЭЛЕКТРОЦЕНТРАЛИ

 

Теплоэлектроцентраль — электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

 

Общая характеристика

 

Теплоэлектроцентраль — тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды. Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы, является отличительной особенностью ТЭЦ и носит название Теплофикация. Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению санитарного состояния населённых мест.

Исходный источник энергии на ТЭЦ — органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на планируемых атомных ТЭЦ). Преимущественное распространение имеют (1976) паротурбинные ТЭЦ на органическом топливе (рис. 1)[2], являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций (ТПЭС). Различают ТЭЦ промышленного типа — для снабжения теплом промышленных предприятий, и отопительного типа — для отопления жилых и общественных зданий, а также для снабжения их горячей водой. Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных — на расстояние до 20—30 км(в виде тепла горячей воды).

Основное оборудование паротурбинных ТЭЦ — турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию, и Котлоагрегаты, вырабатывающие пар для турбин. В состав турбоагрегата входят Паровая турбина и Синхронный генератор. Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7—1,5 Мн/м2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7— 1,5 Мн/м2 (для промышленных потребителей) и 0,05—0,25 Мн/м2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05—0,25 Мн/м2.

Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность, развиваемая такими турбинами, зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности. Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).

У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по «тепловому» графику, то есть с минимальным «вентиляционным» пропуском пара в конденсатор. В СССР разработаны и построены ТТ с конденсацией и отбором пара, в которых использование тепла конденсации предусмотрено: такие ТТ в условиях достаточной тепловой нагрузки могут работать как ТТ с противодавлением. ТТ с конденсацией и отбором пара получили на ТЭЦ преимущественное распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрическую нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по «электрическому» графику, с необходимой, полной или почти полной электрической мощностью.

Электрическую мощность теплофикационных турбоагрегатов (В отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара. Поэтому в СССР крупные теплофикационные турбоагрегаты унифицированы именно по этому параметру. Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежего пара (около 750 т/ч), но различную электрическую мощность (соответственно 100, 135 и 175 МВт). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ч). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицировались также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/чиспользуют для снабжения паром как конденсационных турбин на 300 МВт, так и самых крупных в мире ТТ на 250 МВт.

Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40—50%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов. Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5—0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10—20% от максимальной) пиковыми паровыми котлами невысокого давления. Отпуск тепла может осуществляться по двум схемам (рис. 2)[2]. При открытой схеме пар от турбин направляется непосредственно к потребителям. При закрытой схеме тепло к теплоносителю (пару, воде), транспортируемому к потребителям, подводится через теплообменники (паропаровые и пароводяные). Выбор схемы определяется в значительной мере водным режимом ТЭЦ.

На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо — мазут и газ. Для защиты воздушного бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС) золоуловители, для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200—250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями — Градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.

На газотурбинных ТЭЦ в качестве привода электрических генераторов используют газовые турбины. Теплоснабжение потребителей осуществляется за счёт тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащенные паротурбинными и газотурбинными агрегатами) и атомные электростанции.

 

Рис. 1. Общий вид теплоэлектроцентрали.

Рис. 2. Простейшие схемы теплоэлектроцентралей с различными турбинами и различными схемами отпуска пара: а — турбина с противодавлением и отбором пара, отпуск тепла — по открытой схеме; б — конденсационная турбина с отбором пара, отпуск тепла — по открытой и закрытой схемам; ПК — паровой котёл; ПП — пароперегреватель; ПТ — паровая турбина; Г — электрический генератор; К — конденсатор; П — регулируемый производственный отбор пара на технологические нужды промышленности; Т — регулируемый теплофикационный отбор на отопление; ТП — тепловой потребитель; ОТ — отопительная нагрузка; КН и ПН — конденсатный и питательный насосы; ПВД и ПНД — подогреватели высокого и низкого давления; Д — деаэратор; ПБ — бак питательной воды; СП — сетевой подогреватель; СН — сетевой насос.

Принципиальны схема ТЭЦ

Рис. 3. Принципиальная схема ТЭЦ.[1]

В отличие от КЭЦ, ТЭЦ вырабатывает и отпускает потребителям не только электрическую, но и тепловую энергию в виде горячей воды и пара.

Для отпуска горячей воды служат сетевые подогреватели (бойлеры), в которых вода подогревается паром из теплофикационных отборов турбины до необходимой температуры. Вода в сетевых подогревателях называется сетевой. После охлаждения у потребителей сетевая вода насосами вновь подается в сетевые подогреватели. Конденсат бойлеров насосами направляется в деаэратор.

Пар, отдаваемый на производство, используется заводскими потребителями на различные цели. От характера этого использования зависит возможность возврата производственного конденсата в КА ТЭЦ. Возвращаемый с производства конденсат, если качество его отвечает производственным нормам, направляется в деаэратор насосом, установленным после сборной ёмкости. В противном случае он подается на ВПУ для соответствующей обработки (обессоливание, умягчение, обезжелезивание и т.д.).

ТЭЦ обычно оборудуется барабанными КА. Из этих КА небольшая часть котловой воды выводиться с продувкой в расширитель непрерывной продувки и далее через теплообменник сбрасывается в дренаж. Сбрасываемая вода называется продувочной. Полученный в расширителе пар обычно направляется в деаэратор.

 

Принцип работы ТЭЦ

 

Рассмотрим принципиальную технологическую схему ТЭЦ (рис.4), характеризующую состав ее частей, общую последовательность технологических процессов.

 

Рис. 4. Принципиальная технологическая схема ТЭЦ.[1]

В состав ТЭЦ входят топливное хозяйство (ТХ) и устройства для подготовки его перед сжиганием ( ПТ). Топливное хозяйство включает приемно-разгрузочные устройства, транспортные механизмы, топливные склады, устройства для предварительной подготовки топлива (дробильные установки).

Продукты сгорания топлива - дымовые газы отсасываются дымососами (ДС) и отводятся через дымовые трубы (ДТр) в атмосферу. Негорючая часть твердых топлив выпадает в топке в виде шлака (Ш), а значительная часть в виде мелких частиц уносится с дымовыми газами. Для защиты атмосферы от выброса летучей золы перед дымососами устанавливают золоуловители (ЗУ). Шлаки и зола удаляются обычно на золоотвалы. Воздух, необходимый для горения, подается в топочную камеру дутьевыми вентиляторами. Дымососы, дымовая труба, дутьевые вентиляторы составляют тягодутьевую установку станции (ТДУ).

Перечисленные выше участки образуют один из основных технологических трактов - топливно-газовоздушный тракт.

Второй важнейший технологический тракт паротурбинной электростанции- пароводяной, включающий пароводяную часть парогенератора, тепловой двигатель (ТД), преимущественно паровую турбину, конденсационную установку, включая конденсатор (К) и конденсатный насос (КН), систему технического водоснабжения (ТВ) с насосами охлаждающей воды (НОВ), водоподготовительную и питательную установку, включающую водоочистку (ВО), подогреватели высокого и низкого давления (ПВД и ПНД), питательные насосы (ПН), а также трубопроводы пара и воды.

В системе топливно-газовоздушного тракта химически связанная энергия топлива при сжигании в топочной камере выделяется в виде тепловой энергии, передаваемой радиацией и конвекцией через стенки металла трубной системы парогенератора воде и образуемому из воды пару. Тепловая энергия пара преобразуется в турбине в кинетическую энергию потока, передаваемую ротору турбины. Механическая энергия вращения ротора турбины, соединенного с ротором электрического генератора (ЭГ), преобразуется в энергию электрического тока, отводимого за вычетом собственного расхода электрическому потребителю.

Тепло проработавшего в турбинах рабочего тела можно использовать для нужд внешних тепловых потребителей (ТП).

Потребление тепла происходит по следующим направлениям:

1. Потребление для технологических целей;

2. Потребление для целей отопления и вентиляции жилых, общественных и производственных зданий;

3. Потребление для других бытовых нужд.

График технологического потребления тепла зависит от особенностей производства, режима работы и т.п. Сезонность потребления в этом случае имеет место только в сравнительно редких случаях. На большинстве же промышленных предприятиях разница между зимним и летним потреблением тепла для технологических целей незначительна. Небольшая разница получается только в случае применения части технологического пара для отопления, а также вследствие увеличения в зимнее время потерь тепла.

Для потребителей тепла на основании многочисленных эксплуатационных данных устанавливают энергетические показатели, т.е. нормы количества расходуемого различными видами производства тепла на единицу вырабатываемой продукции.

Вторая группа потребителей, снабжаемая теплом для целей отопления и вентиляции, характеризуется значительной равномерностью расхода тепла на протяжении суток и резкой неравномерностью расхода тепла в течении года: от нуля летом до максимума зимой.

Тепловая мощность отопления находится в прямой зависимости от температуры наружного воздуха, т.е. от климатических и метеорологических факторов.

При отпуске тепла со станции теплоносителями могут служить пар и горячая вода, подогреваемая в сетевых подогревателях паром из отборов турбин. Вопрос о выборе того или иного теплоносителя и его параметров решают, исходя из требований технологии производства. В некоторых случаях отработавший на производстве пар низкого давления (например, после паровых молотов) применяют для отопительно-вентиляционных целей. Иногда же пар применяют для отопления производственных зданий, чтобы избежать устройства отдельной системы отопления горячей водой.

Отпуск пара на сторону для целей отопления явно нецелесообразен, так как отопительные нужды легко удовлетворить горячей водой с оставлением всего конденсата греющего пара на станции.

Отпуск горячей воды для технологических целей производится сравнительно редко. Потребителями горячей воды являются только производства, расходующие ее для горячих промывок и других подобных им процессов, причем загрязненная вода уже не возвращается на станцию.

Горячая вода, отпускаемая для отопительно-вентиляционных целей, подогревается на станции в сетевых подогревателях паром из регулируемого отбора давлением 1,17-2,45 бар. При этом давлении вода нагревается до температуры 100-120 .

Однако при низких температурах наружного воздуха отпуск больших количеств тепла при такой температуре воды становится нецелесообразным, так как количество циркулирующей в сети воды, а следовательно, и расход электроэнергии на ее перекачивание заметно увеличиваются. Поэтому, кроме основных подогревателей, питающихся паром из регулируемого отбора, устанавливают пиковые подогреватели, к которым греющий пар давлением 5,85-7,85 бар подводится из отбора более высокого давления или непосредственно из котлов через редукционно-охладительную установку.

Чем выше начальная температура воды, тем меньше расход электроэнергии на привод сетевых насосов, а также диаметр теплопроводов. В настоящее время в пиковых подогревателях воду чаще всего подогревают до температуры 150 цию от потребителя, при чисто отопительной нагрузке имеет обычно температуру около 70 .

 

1.4. Расход теплоты и КПД ТЭЦ

 

Теплоэлектроцентрали отпускают потребителям электрическую энергию и теплоту с паром, отработавшим в турбине. В Советском Союзе принято распределять расходы теплоты и топлива между этими двумя видами энергии:

  , (3.1)
  , (3.1а)

Индексы «с» и «ту» относятся к станции и турбоустановке, «э» — к электрической энергии, «т» — к теплоте.

Различают два вида КПД ТЭЦ: 1) по производству (и отпуску) электрической энергии:

  , (3.2)
  , (3.2а)

2) по производству и отпуску теплоты:

  , (3.3)
  , (3.3а)

где — затрата теплоты на внешнего потребителя; — отпуск теплоты потребителю; hт — КПД отпуска теплоты турбинной установкой, учитывающий потери теплоты при отпуске ее (в сетевых подогревателях, паропроводах и т. д.); hт = 0,98¸0,99.

Общий расход теплоты на турбоустановку Qту составляется из теплового эквивалента внутренней мощности турбины 3600Ni, расхода теплоты на внешнего потребителя Qт и потери теплоты в конденсаторе турбины Qк. Общее уравнение теплового баланса теплофикационной турбоустановки имеет вид

  . (3.4)

В Советском Союзе принят физический метод распределения расхода теплоты между электрической и тепловой энергией. На теплового потребителя относят действительное количество теплоты, затрачиваемой на него, а на электрическую энергию — остальное количество теплоты:

  ; (3.5)
  . (3.5а)

Для ТЭЦ в целом с учетом КПД парового котла hп.к и КПД транспорта теплоты hтр получим:

  ; (3.6)
  . (3.6а)

Значение в основном определяется значением значение — значением .

Выработка электроэнергии с использованием отработавшей теплоты существенно повышает КПД по производству электроэнергии на ТЭЦ по сравнению с КЭС и обусловливает значительную экономию топлива в стране.

 

Вывод по части один

Таким образом, теплоэлектроцентраль не является источником масштабных загрязнений района расположения. Технически и экономически обоснованное планирование производства на ТЭЦ позволяет достигнуть наиболее высоких эксплуатационных показателей при минимальных затратах всех видов производственных ресурсов, т. к. на ТЭЦ тепло «отработавшего» в турбинах пара используется для нужд производства, отопления и горячего водоснабжения

 

СРАВНЕНИЕ РОССИЙСКИХ ТЭЦ С ИНОСТРАННЫМИ

 

Крупнейшими в мире странами-производителями электроэнергии являются вырабатывающие по 20 % от мирового производства США, Китай и уступающие им в 4 раза Япония, Россия, Индия.

 

Китай

Энергопотребление Китая к 2030 г., по прогнозу корпорации ExxonMobil, вырастет более чем в 2 раза. В целом на долю КНР к этому времени придется около 1/3 мирового увеличения спроса на электроэнергию. Данная динамика, по мнению ExxonMobil, принципиально отличается от положения дел в США, где прогноз роста спроса очень умеренный.

В настоящее время структура генерирующих мощностей КНР такова. Около 80% вырабатываемой электроэнергии в Китае обеспечивают угольные ТЭС, что связано с наличием крупных угольных месторождений в стране. 15% обеспечивают ГЭС, 2% приходится на АЭС и по 1% на мазутные, газовые ТЭС и иные электростанции (ветровые и пр.). Что касается прогнозов, то в ближайшем будущем (2020 г.) роль угля в китайской энергетике останется доминирующей, однако существенно увеличится доля атомной энергии (до 13%) и доля природного газа (до 7%)1, применение которого позволит существенно улучшить экологическую обстановку в стремительно развивающихся городах КНР.

 

Япония

Суммарная установленная мощность электростанций Японии достигает 241,5 млн кВт. Из них 60% составляют ТЭС (в т.ч. ТЭС, работающие на газе – 25%, мазуте – 19%, угле – 16%). На АЭС приходится 20%, на ГЭС – 19% суммарных электрогенерирующих мощностей. В Японии функционирует 55 ТЭС установленной мощностью свыше 1 млн кВт. Крупнейшими из них являются газовые: Кавагое (Chubu Electric) – 4,8 млн кВт, Хигаши (Tohoku Electric) – 4,6 млн кВт, мазутная Касима (Tokyo Electric) – 4,4 млн кВт и угольная Хекинан (Chubu Electric) – 4,1 млн кВт.

Таблица 1-Производство электроэнергии на ТЭС по данным IEEJ-Institute of Energy Economics, Japan (Институт экономики энергетики, Япония)

Год
Кол-во энергии, млрд. кВт ч 586,4 577,8 632,5 658,4 559,1 565,6

Индия

Около 70% электроэнергии, потребляемой в Индии создается тепловыми электростанциями. Принятая властями страны программа электрификации превратила Индию в один из наиболее привлекательных рынков для инвестиций и продвижения инжиниринговых услуг. На протяжении последних лет республика предпринимает последовательные шаги для создания полноценной и надежной электроэнергетики. Опыт Индии примечателен тем, что в стране, страдающей от нехватки углеводородного сырья, активно ведется освоение альтернативных энергетических источников. Особенностью потребления электроэнергии в Индии, которую отмечают экономисты Всемирного банка, является то, что рост бытового потребления сильно ограничен отсутствием у почти 40% жителей доступа к электричеству (по другим источникам, доступ к электричеству ограничен у 43% горожан и 55% сельских жителей). Еще одной болезнью местной электроэнергетики является ненадежность поставок. Отключения электричества – обычная ситуация даже в крупных годах и промышленных центрах страны.

По данным Международного энергетического агентства, учитывая нынешние экономические реалии, Индия – одна из немногих стран, где в обозримой перспективе ожидается устойчивый рост потребления электроэнергии. Экономика этой второй в мире по количеству населения страны – одна из самых быстроразвивающихся. За последние два десятилетия средний рост годового ВВП составил 5,5%. В 2007/08 финансовом году, по данным Центральной статистической организации Индии, объем ВВП достиг $1059,9 млрд, что ставит страну на 12-ю строчку в мире по величине экономики. В структуре ВВП доминирующее положение занимают услуги (55,9%), далее идут промышленность (26,6%) и сельское хозяйство (17,5%). В то же время, по неофициальным данным, в июле текущего года в стране был установлен своеобразный пятилетний рекорд – спрос на электроэнергию превысил предложение на 13,8%.

Более 50% электроэнергии в Индии вырабатывают ТЭС, использующие уголь. Индия является одновременно третьим в мире производителем угля и третьим в мире потребителем этого ресурса, при этом оставаясь нетто-экспортером угля. Этот вид топлива остается важнейшим и самым экономичным для энергетики Индии, до четверти населения которой живет за чертой бедности.

 

Великобритания

Сегодня в Великобритании электростанции, работающие на угле, производят около трети необходимой стране электроэнергии. Такие электростанции выбрасывают в атмосферу миллионы тонн парниковых газов и твердых токсичных частиц, поэтому экологи постоянно убеждают правительство в необходимости немедленно закрыть эти электростанции. Но проблема состоит в том, что восполнить ту часть электроэнергии, которую вырабатывают тепловые электростанции, пока нечем.

 

Вывод по части два

Таким образом, Россия уступает крупнейшим в мире странами-производителями электроэнергии США и Китай, вырабатывающие по 20 % от мирового производства и стоит на ровне с Японией и Индией.

 

 

ЗАКЛЮЧЕНИЕ

 

В данном реферате описаны виды теплоэлектроцентралей. Рассмотрена принципиальная схема, назначение элементов структуры и описание их работы. Определены основные КПД станции.

 

 


 





Читайте также:
Что такое филология и зачем ею занимаются?: Слово «филология» состоит из двух греческих корней...
Средневековье: основные этапы и закономерности развития: Эпоху Античности в Европе сменяет Средневековье. С чем связано...
Особенности этнокультурного развития народов Пензенского края: Пензенский край – типичный российский регион, где проживает ...
Решебник для электронной тетради по информатике 9 класс: С помощью этого документа вы сможете узнать, как...

Рекомендуемые страницы:


Поиск по сайту

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Обратная связь
0.056 с.